
- •Самостоятельное изучение
- •Модели и система параметров логических элементов
- •2. Типы выходных каскадов цифровых элементов: логический выход.
- •3. Типы выходных каскадов цифровых элементов: выходы с тремя состояниями.
- •Типы выходных каскадов цифровых элементов: выход с открытым коллектором.
- •Паразитные связи цифровых элементов по цепям питания, фильтрация питающих напряжений в схемах цифровых устройств.
- •6 Типовые ситуации при построении цифровых устройств на имс
- •7 Согласование уровней сигналов. Сопряжение кмоп и тлл схем.
- •8 Схемы низковольтной кмоп-логики и их сопряжение с другими схемами.
- •8 Схемы низковольтной кмоп-логики и их сопряжение с другими схемами. (продолжение)
- •9 Элементы индикации
- •9 Элементы индикации (продолжение)
- •10 Риски в комбинационных схемах.
- •11. Дешифраторы, преобразователи кодов
- •12. Шифраторы
- •13. Мультиплексоры.
- •14. Демультиплексоры
- •Компараторы (схемы сравнения).
- •16.Синхронизация в цифровых устройствах.
- •17. Регистры.
- •18. Счетчики. Двоичные счетчики.
- •18. Счетчики. Двоичные счетчики. (продолжение)
- •19. Двоично-кодированные счетчики с произвольным модулем.
- •20. Счетчики с недвоичным кодированием.
- •20. Счетчики с недвоичным кодированием. (продолжение)
- •21. Полиномиальные счетчики.
- •2 1. Полиномиальные счётчики (продолжение)
- •22. Представление чисел с фиксированной запятой.
- •23. Представление чисел с плавающей запятой.
- •24. Погрешности представления чисел.
- •25. Кодирование двоичных чисел со знаком: прямой код
- •26. Кодирование двоичных чисел со знаком: дополнительный код.
- •27. Кодирование двоичных чисел со знаком: обратный код.
- •28. Сложение и вычитание двоичных чисел в форме с фиксированной запятой со знаком в прямых кодах. Особенности выполнения операций над числами без знака.
- •29. Сложение и вычитание двоичных чисел в форме с фиксированной запятой со знаком в дополнительных кодах.
- •30. Сложение и вычитание двоичных чисел в форме с фиксированной запятой со знаком в обратных кодах.
- •30. Сложение и вычитание двоичных чисел в форме с фиксированной запятой со знаком в обратных кодах. (продолжение)
- •31. Переполнение при сложении чисел с фиксированной запятой. Модифицированные коды. [лекции, стр.26-28]
- •31. Переполнение при сложении чисел с фиксированной запятой. Модифицированные коды. [лекции, стр.26-28] (продолжение)
- •32.Умножение чисел с фиксированной запятой: общая схема целочисленного умножения. [подробнее с примерами – лекции, стр. 28-3 , но это след. Вопросы]
- •33. Методы умножения двоичных чисел без знака: умножение с младших разрядов множителя со сдвигом множимого.
- •34. Методы умножения двоичных чисел без знака: умножение с младших разрядов множителя со сдвигом суммы частичных произведений
- •35. Методы умножения двоичных чисел без знака: умножение со старших разрядов множителя со сдвигом множимого.
- •36. Методы умножения двоичных чисел без знака: умножение со старших разрядов множителя со сдвигом суммы частичных произведений.
- •Умножение двоичных чисел со знаком. Умножение чисел в дополнительном коде.
- •38. Логические методы ускорения умножения: алгоритм Бута.
- •39 Логические методы ускорения умножения: модифицированный алгоритм Бута, алгоритм Лемана
- •40. Логические методы ускорения умножения: умножение с обработкой двух разрядов множителя за шаг (умножение на два разряда одновременно)
- •41.Деление чисел с фиксированной запятой: общая схема целочисленного деления.
- •42. Методы деления двоичных чисел без знака: деление с восстановлением остатка.
- •43. Методы деления двоичных чисел без знака: деление без восстановления остатка.
- •44. Деление двоичных чисел со знаком. Деление чисел в дополнительном коде.
- •Сложение и вычитание двоичных чисел в форме с плавающей запятой.
- •46.Умножение чисел с плавающей запятой.
- •47. Деление чисел с плавающей запятой.
- •48.Выполнение операций сложение и вычитание в двоично-десятичном коде.
- •49.Сложение в двоично-десятичном коде чисел со знаком.
- •50.Сумматоры. Одноразрядный сумматор. Многоразрядные сумматоры.
- •50.Сумматоры. Одноразрядный сумматор. Многоразрядные сумматоры. (продолжение)
- •51.Арифметико-логические устройства (алу).
20. Счетчики с недвоичным кодированием.
Наибольшее практическое значение среди счетчиков с недвоичным кодир. состояний имеют счетчики с кодом Грея, счетчики Джонсона и счетчики с кодом "1 из N".
Счетчики в коде Грея
Код Грея относится к таким, в которых при переходе от любой кодовой комбинации к следующей изменяется только один разряд. В схемотехнике счетчиков это свойство устраняет одновременное переключение многих разрядов, характерное для двоичных счетчиков при некоторых переходах. Одновременное переключение многих элементов создает такие токовые импульсы в цепях питания схем, которые могут вызывать сбои в работе схемы . В ряде БИС/СБИС применение двоичных счетчиков большой разрядности не разрешается, и они заменяются счетчиками с кодом Грея и последующим преобразованием кода Грея в двоичный.
Сложность
счетчика с кодом Грея ненамного больше,
чем сложность двоичного счетчика,
преобразователь кодов также относительно
прост. Нетрудно построить счетчик с
кодом Грея формальным способом исходя
из таблицы переходов счетчика. Последова-
тельность кодовых комбинаций для кода
Грея можно получить по соотношению
,
где
— значение разряда кода Грея;
—
значение разряда двоичного кода,
преобразуемого в код Грея. Разряд левее
старшего для двоичного кода считается
нулевым.
Счетчики в коде "1 из N"
Счетчики в коде "1 из N" находят применение в системах синхронизации, управления и других ЦУ. На их основе получают импульсные последовательности с заданными временными диаграммами. Для этого можно вначале разбить период временной диаграммы на части ("кванты"), соответствующие ми- нимальному интервалу временной диаграммы, применив задающий генератор с частотой, равной m/Т, где m — число "квантов" в периоде диаграммы Т. Выходные импульсы задающего генератора затем распределяются во времени и пространстве так, что каждый "квант" появляется в свое время и в своем пространственном канале.
Счетчик в коде "1 из N" имеет один вход, на который подаются импульсы задающего генератора, и N выходов, причем первый импульс генератора передается на первый выход счетчика (канал), второй импульс во второй канал и т. д. Структура такого счетчика, называемого также распределителем тактов РТ. Распределители импульсов не имеют самостоятельной схемотехники, они реализуются на основе распределителей уровней путем включения в их выходные цепи конъюнкторов, на вторые входы которых подаются импульсы задающего генератора.
Имея распределенные во времени и пространстве "кванты", можно по схеме ИЛИ собирать из них импульсные последовательности с необходимыми временными диаграммами. Часто нужны именно те последовательности, которые вырабатываются непосредственно распределителями тактов.
Распределителем тактов является сдвигающий регистр, замкнутый в кольцо, если записанное в регистр слово содержит всего одну единицу. При сдвигах единица перемещается с одного выхода на другой, циркулируя в кольце Число выходов РТ равно разрядности регистра. Недостаток схемы — потеря правильного функционирования при сбое. Если в силу каких-либо причин слово в регистре исказится, то возникшая ошибка станет постоянной. Схема не обладает свойством самозапуска.