
- •3.Вязкость жидкости
- •2. Основные и вспомогательные функции рабочих жидкостей в гидроприводах. Основные свойства, характеристики и требования к рабочим жидкостям гидроприводов.
- •4. Плотность жидкостей. Влияние температуры и давления на плотность жидкостей.
- •5. Сжимаемость и температурное расширение жидкостей.
- •7.Выбор и эксплуатация рабочих жидкостей
- •8.Гидростатическое давление и его св-ва
- •9.Основное уравнение гидростатики
- •10. Основные понятия о движении жидкости
- •11. Измерение скорости потока и расхода жидкости
- •12. Уравнение Бернулли для идеальной жидкости
- •13. Потери напора при ламинарном течении жидкости
- •13. Потери напора при турбулентном течении жидкости
- •14. Местные гидравлические сопротивления
- •15.Гидравлический удар в гидролиниях. Причины его возникновения и методы борьбы с ним.
- •16.Кавитационные явления. Причины появления кавитации и методы борьбы с ней.
- •17.Облитерационные явления. Методы борьбы с облитерацией.
- •18. Приборы для измерения давления. Принцип их устройства и работы.
- •19. Гидролинии и соединения для них. Конструкция и области применения. Определение внутреннего диаметра трубопроводов объемных гидроприводов строительных машин.
- •21. Назначение, устройство и принцип работы гидроусилителей рулевого управления
- •22. Регулирование скорости выходного звена гидродвигателей в зависимости от встречной нагрузки в объемных гидроприводах.
- •23. Многодвигательные гидроприводы: варианты схем подключения гидродвигателей, регулирование скоростей выходных звеньев гидродвигателей при различных нагрузках.
- •24. Общие сведения о гидравлических машинах. Их классификация, назначение, символические (графические) изображения, основные энергетические параметры и области применения.
- •31Определение основных параметров роторно-поршневых гидромашин.
- •35.Кинематика аксиально-поршневых гидромашин.
- •36.Гидромашины с регулируемым рабочим объемом. Конструкции, область применения.
- •37.Гидроцилиндры. Их основные типы, конструкции и принцип работы.
- •38.Расчет гидроцилиндров.
- •39.Гидроприводы с параллельным и последовательным соединением гидродвигателей, работающих в одинаковых и различных нагрузочных режимах.
- •40.Гидроприводы с дроссельным регулированием.
- •40. Гидроприводы с дроссельным регулированием.
- •42.Контрольно-регулирующая гидроаппаратура. Ее функциональное назначение, принцип работы и устройство.
- •43.Регулирующая аппаратура систем гидроавтоматики. Переливные, предохранительные и редукционные клапаны.
- •46.Конструктивные особенности, расчет и свойства золотниковых распределителей. Перекрытие окон золотников.
- •47.Понятия линейности и позиционности золотниковыхгидрораспределителей
- •51.Крановые и клапанные гидрораспределители
- •52.Правила выполнения принципиальных схем
- •56. Гидродинамические передачи в конструкциях строительных машин
1. История развития гидравлики и гидроприводов. Их техническое и экономическое значение в современном и перспективном машиностроении. Гидравлика (техническая механика жидкости) - прикладная часть гидромеханики, которая использует те или иные допущения для решения практических задач. Она обладает сравнительно простыми методиками расчета по сравнению с теоретической механикой жидкости, где применяется сложный математический аппарат. Исторически гидравлика является одной из самых древних наук в мире. Археологические исследования показывают, что еще за 5000 лет до нашей эры в Китае, а затем в других странах древнего мира найдены описания устройства различных гидравлических сооружений Первые указания о научном подходе к решению гидравлических задач относятся к 250 году до н.э., когда Архимедом был открыт закон о равновесии тела, погруженного в жидкость. Потом на протяжении 1500 лет особых изменений гидравлика не получала. Наука в то время почти совсем не развивалась, образовался своего рода застой. И только в XVI-XVII веках нашей эры в эпоху Возрождения, или как говорят историки Ренессанса, появились работы Галилея, Леонардо да Винчи, Паскаля, Ньютона, которые положили серьезное основание для дальнейшего совершенствования гидравлики как науки. Роль гидравлики в современном машиностроении трудно переоценить. Любой автомобиль, летательный аппарат, морское судно не обходится без применения гидравлических систем. Добавим сюда строительство плотин, дамб, трубопроводов, каналов, водосливов. На производстве просто не обойтись без гидравлических прессов, способных развивать колоссальные усилия.
3.Вязкость жидкости
Вязкость жидкости - свойство жидкости сопротивляться скольжению или сдвигу ее слоев. Суть ее заключается в возникновении внутренней силы трения между движущимися слоями жидкости, которая определяется по формуле Ньютона
где S - площадь слоев жидкости или стенки, соприкасающейся с жидкостью, м2, μ- динамический коэффициент вязкости, или сила вязкостного трения, d /dy - градиент скорости, перпендикулярный к поверхности сдвига.
Отсюда динамическая вязкость равна
где τ - касательные напряжения жидкости, τ = T/S.
Величина обратная динамическому коэффициенту вязкости (1/μ) называется текучестью жидкости.
Отношение динамического коэффициента вязкости к плотности жидкости называется кинематическим коэффициентом вязкости.
Процесс определения вязкости называется вискозиметрией, а приборы, которыми она определяется вискозиметрами. Помимо оценки вязкости с помощью динамического и кинематического коэффициентов пользуются условной вязкостью - градусы Энглера ( Е).
2. Основные и вспомогательные функции рабочих жидкостей в гидроприводах. Основные свойства, характеристики и требования к рабочим жидкостям гидроприводов.
Жидкостью в гидравлике называют физическое тело способное изменять свою форму при воздействии на нее сколь угодно малых сил. Различают два вида жидкостей: жидкости капельные и жидкости газообразные (рис.1.2). Капельные жидкости представляют собой жидкости в обычном, общепринятом понимании этого слова (вода, нефть, керосин, масло и.т.д.). Газообразные жидкости - газы, в обычных условиях представляют собой газообразные вещества (воздух, кислород, азот, пропан и т.д.). В качестве рабочих жидкостей в гидравлическом приводе применяют минеральные масла, водомасляные эмульсии, смеси и синтетические жидкости. Выбор типа и марки рабочей жидкости определяется назначением, степенью надежности и условиями эксплуатации гидроприводов машин. Минеральные масла получают в результате переработки высококачественных сортов нефти с введением в них присадок, улучшающих их физические свойства. Присадки добавляют в количестве 0,05…10%. Присадки могут быть многофункциональными, т.е. влиять на несколько физических свойств сразу. Различают присадки антиокислительные, вязкостные, противоизносные, снижающие температуру застывания жидкости, антипенные и т.д. Водомасляные эмульсии представляют собой смеси воды и минерального масла в соотношениях 100:1, 50:1 и т.д. Минеральные масла в эмульсиях служат для уменьшения коррозионного воздействия рабочей жидкости и увеличения смазывающей способности. Эмульсии применяют в гидросистемах машин, работающих в пожароопасных условиях и в машинах, где требуется большое количество рабочей жидкости (например, в гидравлических прессах). Применение ограничено отрицательными и высокими (до 60 С) температурами. Смеси различных сортов минеральных масел между собой, с керосином, глицерином и т.д. применяют в гидросистемах высокой точности, а также в гидросистемах, работающих в условиях низких температур.