
- •Температура
- •Давление
- •1.3.2. Уравнение состояния термодинамической системы
- •2.3. Внутренняя энергия
- •Теплоемкости процессов
- •3.2. Газовые смеси
- •4.1. Политропные процессы
- •Изохорный процесс
- •Адиабатный процесс
- •7.1. Основные характеристики влажного воздуха
- •Билет №58
- •Билет №59
- •Билет №60
- •Билет №61
- •Билет №62
- •Билет №63
- •Билет №64
- •Билет №65 Область ненасыщенного влажного воздуха
- •Билет №66 Область перенасыщенного влажного воздуха
- •Билет №67
- •Билет №68
- •Билет №69
- •Билет №70
- •Билет №71
- •Билет №72
- •Билет №73
- •Билет №74
- •Билет №75,76
- •Билет №77
- •Билет №78 Эксергия в объеме и ее потери
- •8.4.1. Эксергия в объеме
- •Билет №79
Билет №73
Оказывается, что не только у цикла Карно термический КПД определяется температурами горячего и холодного источников теплоты. Имеется множество обратимых циклов с изотермическими источниками теплоты, для которых термический КПД будет таким же, как и у цикла Карно. Для таких циклов процессы перехода с одной изотермы на другую должны быть эквидистантными, при этом рабочее тело на процессе с уменьшением энтропии передает теплоту рабочему телу на процессе с увеличением энтропии, т.е. греет само себя за счет внутренней теплоты. Эти циклы называются регенеративными (регенерация – восстановление, возобновление, возмещение и т.п.) или обобщенными циклами Карно. Последнее название объясняется тем, что таких циклов может быть сколь угодно много, а цикл Карно является их частным случаем.
Д
ля
доказательства вышеприведенного
утверждения рассмотрим регенеративный
обратимый цикл 1234 с изотермическими
источниками теплоты (рис.8.10) и сравним
его термический КПД с КПД цикла Карно
12АВ,
имеющего такие же температуры источников
теплоты Т1
и Т2.
П
одвод
внешней теплоты q1
к рабочему телу в регенеративном цикле
осуществляется на процессе 12, а отвод
внешней теплоты q2
осуществляется на процессе 34. Теплота
qр
с процесса 23 обратимо передается на
процесс 41. Это внутренняя теплота, она
называется теплотой регенерации,
поскольку рабочее тело греет само себя.
Теплота процесса 23 равна по модулю
теплоте процесса 41, следовательно, в
Т,s- диаграмме площади под этими процессами
одинаковы, а сами процессы представляют
собой эквидистантные кривые. Эти кривые
могут иметь любую конфигурацию.
Поскольку в Т,s- диаграмме процесс 23 эквидистантен по горизонтали процессу 41, то отрезок 12 равен отрезку 34 и отрезку ВА. Следовательно, у обоих циклов одинаковые q1 и q2, а соответственно равны t и ηt=1-Т2/Т1, т.е. цикл 1234 эквивалентен циклу Карно 12АВ.
Более простое доказательство равенства отрезков 12 и 34 а соответственно и равенство КПД этих циклов следует из равенства по модулю изменений энтропий горячего и холодного источников теплоты для всех обратимых циклов: s1-s2=-(s3-s4). Это будет показано при рассмотрении обратимого преобразования теплоты в работу.
Дадим определение регенеративного (обобщенного) цикла Карно.
Регенеративным (обобщенным) циклом Карно называется любой обратимый цикл, осуществляемый между двумя источниками теплоты с постоянными температурами.
Регенерация нашла широкое применение в паротурбинных и газотурбинных установках. Естественно, в реальных циклах невозможно осуществить обратимую передачу теплоты qp c одного процесса рабочего тела на другой (в обратимом теплообменнике поверхность нагрева должна иметь бесконечно большую величину), но принцип регенеративного теплообмена позволяет частично приблизить КПД данного реального цикла к КПД цикла Карно, имеющего такие же источники теплоты.
Билет №74
Любой обратимый цикл можно представить в виде эквивалентного цикла Карно, т.е. цикла с такими же q1 и q2, а соответственно и с такой же работой и термическим КПД, как у исходного цикла. Понятие эквивалентного цикла Карно позволяет сопоставить между собой термические КПД различных по конфигурации обратимых циклов, используя только Т1 и Т2.
Для преобразования произвольного обратимого цикла в эквивалентный цикл Карно вводится понятие среднетермодинамической температуры.
Среднетермодинамической температурой Тm называется частное от деления теплоты процесса на изменение его энтропии:
.
(8.9)
В диаграмме Т,s- значению Тm (рис.8.7) соответствует высота прямоугольника авсd, равновеликого площади 12сd.
Используя понятие среднетермодинамической температуры, представим в виде эквивалентного цикла Карно произвольный обратимый цикл 1234 (рис.8.8). Для этого процесс подвода теплоты в цикл 12 заменим изотермическим процессом ав со среднетермодинамической температурой T1m, а процесс отвода теплоты 34 заменим изотермическим процессом cd со среднетермодинамической температурой T2m. Полученный цикл Карно авсd имеет q1 и q2 равные подведенной и отведенной теплоте рассматриваемого цикла 1234, т.е. это эквивалентные циклы, для которых термический КПД определяется по формуле
.
В дальнейшем понятие эквивалентного цикла Карно будет использоваться для сопоставления тепловой экономичности различных циклов теплоэнергетических установок.