
- •1.1Предмет и задачи атомной физики, её место среди других физических наук.
- •1.2Сериальные закономерности в атомных спектрах, комбинационный принцип Ритца, термы.
- •1.3Класическая модель атома Томсана.
- •1.4Основы классической теории электромагнитного излучения.
- •2.1Опыты Резерфорда.
- •2.2Вывод формулы Резерфорда для рассеяния α-частиц.
- •2.3Следствия из опытов Резерфорда.
- •2.4Экспериментальное определение заряда ядра по методу Чедвика.
- •2.5Планетарная модель атома Резерфорда.
- •2.6Столкновение частиц
- •2.7Сечение рассеяния
- •3.1Теория Бора для атома водорода, круговые орбиты.
- •3.2Доказательство существования дискретной структуры энергетических уровней атомов.
- •3.3Опыты Франка и Герца
- •3.4Изотопический сдвиг
- •5.1Корпускулярно волновой дуализм
- •5.2Гипотеза де Бройля и ее экспериментальное подтверждение на примере дифракции электронов, атомов, нейтронов
- •5.3Фазовая и групповая скорости волн де Бройля.
- •5.4Волновой пакет. Статистический характер связи корпускулярных и волновых свойств.
- •5.5Электронный микроскоп, понятие об электронной оптике.
- •6.1Основы квантовой механики.
- •6.2Соотношение неопределённостей.
- •6.3Волновая функция.
- •6.4Принцип суперпозиции.
- •6.5Уравнение Клейна-Гордона.
- •7.1Нестационарное и стационарное уравнение Шрёдингера.
- •7.2Частица в потенциальном ящике.
- •8.1Уравнение Шредингера для атома водорода
- •8.2Физический смысл квантовых чисел
- •9.1Спектры атомов щелочных металлов.
- •9.2Серии в спектрах щелочных металлов и их происхождение.
- •9.3Закон Мозли
- •9.4Тонкая структура Спектральных линий атомов щелочных металлов.
- •9.5Спин Электрона
- •10 Тема
- •10.1Принцип Паули и заполнение электронных оболочек атомов
- •10.2Физические основы периодической системы элементов таблицы Менделеева
- •11 Тема
- •11.1Магнитные свойства Атомов
- •11.2Орбитальный и собственный момент электрона
- •11.3Полный магнитный момент одноэлектронного атома
- •11.4Гиромагнитное отношение орбитальных моментов
- •11.5Магнитная энергия атомов
- •11.6Опыты Штерна и Герлаха
- •12 Тема
- •13 Тема
- •13.1Рентгеновские лучи.
- •13.2Тормозное и характеристическое излучения.
- •13.3Серии в спектре характеристического излучения и его особенности.
- •13.4Прохождение рентгеновских лучей через вещество.
- •14 Тема
- •14.1Принцип построения оптических квантовых генераторов.
3.4Изотопический сдвиг
Cдвиг друг относительно
друга уровней энергии и спектральных
линий атомов разд. изотопов одного хим.
элемента; проявляется также во вращат.
и колебат. спектрах молекул, содержащих
разл. изотопы одного элемента. И. с. в
спектрах изолированного атома может
быть обусловлен неск. причинами. Одна
из них связана с движением ядра
относительно центра инерции атома
(эффект массы). В системе центра инерции
импульс ядра Р равен сумме импульсов
электронов Sipi. Учёт
движения ядра приводит к появлению в
гамильтониане атома члена:
где т - масса электрона, М - масса ядра.
И. с. равен квантовомеханич. среднему
от этой величины. Вклад в энергию атома,
соответствующий первому члену суммы
(*), наз. нормальным или боровским сдвигом,
он равен
энергия атома в случае неподвижного
ядра. Вклад, вносимый в энергию атома
вторым членом, наз. специфич. И. с. имеет
чисто квантовый характер и возникает
вследствие обменного взаимодействия
атомных электронов.
3.5Ридберговские системы
4 Тема
4.1Элиптические орбиты для водородоподобных атомов.
4.2Правила квантования Бора-Зоммерфельда.
4.3Пространственное квантование орбит.
4.4Трудности теории Бора
1)Не смогла объяснить интенсивность спектральных линий.
2)Справедлива только для водородоподобных атомов и не работает для атомов, следующих за ним в таблице Менделеева.
3)Теория Бора логически противоречива: не является ни классической, ни квантовой. В системе двух уравнений, лежащих в её основе, одно — уравнение движения электрона — классическое, другое — уравнение квантования орбит — квантовое.
Теория Бора являлась недостаточно последовательной и общей. Поэтому она в дальнейшем была заменена современной квантовой механикой, основанной на более общих и непротиворечивых исходных положениях. Сейчас известно, что постулаты Бора являются следствиями более общих квантовых законов. Но правила квантования типа широко используются и в наши дни как приближенные соотношения: их точность часто бывает очень высокой.
5 Тема
5.1Корпускулярно волновой дуализм
Недостаточность теории Бора сделала необходимым критический пересмотр основ квантовой теории и представлений о природе элементарных частиц (электронов, протонов и т. п.). Возник вопрос о том, насколько исчерпывающим является представление электрона в виде малой механической частицы, характеризуемой определенными координатами и определенной скоростью.
В результате углубления наших знаний о природе света выяснилось, что в оптических явлениях обнаруживается своеобразный дуализм. Наряду с такими свойствами света, которые самым непосредственным образом свидетельствуют о его волновой природе (интерференция, дифракция), имеются и другие свойства, столь же непосредственно обнаруживающие его корпускулярную природу (фотоэффект, явление Комптона).
В 1924 г. Луи де-Бройль выдвинул гипотезу, что дуализм не является особенностью одних только оптических явлений, но имеет универсальное значение.
Допуская, что частицы вещества наряду
с корпускулярными свойствами имеют
также и волновые, де-Бройль перенес на
случай частиц вещества те же правила
перехода от одной картины к другой,
какие справедливы в случае света. Фотон,
обладает энергией
и импульсом
.
По идее де-Бройля, движение электрона
или какой-либо другой частицы связано
с волновым процессом, длина волны
которого равна
(*) – ф-ла де Бройля, а частота
.