
- •1.1Предмет и задачи атомной физики, её место среди других физических наук.
- •1.2Сериальные закономерности в атомных спектрах, комбинационный принцип Ритца, термы.
- •1.3Класическая модель атома Томсана.
- •1.4Основы классической теории электромагнитного излучения.
- •2.1Опыты Резерфорда.
- •2.2Вывод формулы Резерфорда для рассеяния α-частиц.
- •2.3Следствия из опытов Резерфорда.
- •2.4Экспериментальное определение заряда ядра по методу Чедвика.
- •2.5Планетарная модель атома Резерфорда.
- •2.6Столкновение частиц
- •2.7Сечение рассеяния
- •3.1Теория Бора для атома водорода, круговые орбиты.
- •3.2Доказательство существования дискретной структуры энергетических уровней атомов.
- •3.3Опыты Франка и Герца
- •3.4Изотопический сдвиг
- •5.1Корпускулярно волновой дуализм
- •5.2Гипотеза де Бройля и ее экспериментальное подтверждение на примере дифракции электронов, атомов, нейтронов
- •5.3Фазовая и групповая скорости волн де Бройля.
- •5.4Волновой пакет. Статистический характер связи корпускулярных и волновых свойств.
- •5.5Электронный микроскоп, понятие об электронной оптике.
- •6.1Основы квантовой механики.
- •6.2Соотношение неопределённостей.
- •6.3Волновая функция.
- •6.4Принцип суперпозиции.
- •6.5Уравнение Клейна-Гордона.
- •7.1Нестационарное и стационарное уравнение Шрёдингера.
- •7.2Частица в потенциальном ящике.
- •8.1Уравнение Шредингера для атома водорода
- •8.2Физический смысл квантовых чисел
- •9.1Спектры атомов щелочных металлов.
- •9.2Серии в спектрах щелочных металлов и их происхождение.
- •9.3Закон Мозли
- •9.4Тонкая структура Спектральных линий атомов щелочных металлов.
- •9.5Спин Электрона
- •10 Тема
- •10.1Принцип Паули и заполнение электронных оболочек атомов
- •10.2Физические основы периодической системы элементов таблицы Менделеева
- •11 Тема
- •11.1Магнитные свойства Атомов
- •11.2Орбитальный и собственный момент электрона
- •11.3Полный магнитный момент одноэлектронного атома
- •11.4Гиромагнитное отношение орбитальных моментов
- •11.5Магнитная энергия атомов
- •11.6Опыты Штерна и Герлаха
- •12 Тема
- •13 Тема
- •13.1Рентгеновские лучи.
- •13.2Тормозное и характеристическое излучения.
- •13.3Серии в спектре характеристического излучения и его особенности.
- •13.4Прохождение рентгеновских лучей через вещество.
- •14 Тема
- •14.1Принцип построения оптических квантовых генераторов.
12 Тема
13 Тема
13.1Рентгеновские лучи.
Рентге́новское излуче́ние — электромагнитные волны, энергия фотонов которых лежит на шкале электромагнитных волн между ультрафиолетовым излучением и гамма-излучением, что соответствует длинам волн от 10−2 до 103 Å (от 10−12 до 10−7 м)
Положение на шкале электромагнитных волн
Энергетические диапазоны рентгеновского излучения и гамма-излучения перекрываются в широкой области энергий. Оба типа излучения являются электромагнитным излучением и при одинаковой энергии фотонов — эквивалентны. Терминологическое различие лежит в способе возникновения — рентгеновские лучи испускаются при участии электронов (либо в атомах, либо свободных) в то время как гамма-излучение испускается в процессах девозбуждения атомных ядер. Фотоны рентгеновского излучения имеют энергию от 100 эВ до 250 кэВ, что соответствует излучению с частотой от 3·1016 до 6·1019 Гц и длиной волны 0,005—10 нм (общепризнанного определения нижней границы диапазона рентгеновских лучей в шкале длин волн не существует). Мягкий рентген характеризуется наименьшей энергией фотона и частотой излучения (и наибольшей длиной волны), а жёсткий рентген обладает наибольшей энергией фотона и частотой излучения (и наименьшей длиной волны). Жёсткий рентген используется преимущественно в промышленных целях.
Рентгеновские лучи в рентгеновских трубках получаются при торможении ускоренных электронов на аноде (в старых трубках - на антикатоде;) На основании этого Баркла и заключил, что рентгеновские волны, если рентгеновское излучение действительно состоит из них, должны быть поперечными.
13.2Тормозное и характеристическое излучения.
Баркла же установил, что рентгеновское излучение, исходящее из антикатода трубки, состоит из двух частей. Одна из них есть тормозное излучение, возникающее при торможении электронов в антикатоде. Его свойства совершенно не зависят от материала антикатода. Свойства другого существенно определяются материалом, из которого состо- состоит антикатод. Рентгеновское излучение Баркла характеризовал его жесткостью, т. е. способностью проходить через различные вещества. Точная количественная характеристика стала возможной только после опыта Лауэ, когда были разработаны методы рентгеновской спектроскопии, позволившие измерять длины волн рентгеновского излучения .Тормозное излучение дает сплошной спектр. По аналогии с белым светом его называют также белым рентгеновским излучением. В сторону длинных волн интенсивность тормозного излучения спадает полого и асимптотически стремится к нулю. Со стороны коротких волн сплошной спектр обрывается. Такая особенность сплошного рентгеновского излучения объясняется его квантовой природой. Коротковолновая граница сплошного рентгеновского спектра определяется формулой . Она совершенно не зависит от материала анода (антикатода), а определяется только напряжением на трубке. Вообще, относительное распределение энергии по длинам волн в спектре тормозного рентгеновского излучения от материала анода не зависит. Последний влияет только на интегральную интенсивность излучения.
13.3Серии в спектре характеристического излучения и его особенности.
Характеристическое излучение, напротив, имеет линейчатый спектр, т. е. состоит из закономерно расположенных достаточно узких спектральных линий. Их длины волн зависят исключительно от материала анода. В этом отношении характеристическое напоминает линейчатый спектр газов в оптической области. Электронная бомбардировка возбуждает как сплошное, так и характеристическое излучение, тогда как бомбардировка а-частицами или протонами возбуждает только характеристическое излучение. Рентгеновские лучи, испускаемые веществом при действии других рентгеновских лучей, состоят частично из рассеянного первичного пучка, частично из характеристического излучения самого вещества. Характеристическое излучение появляется только после того, как напряжение на трубке начинает превосходить некоторое определенное значение, зависящее лишь от материала анода. На рис. 87 для напряжения на трубке V = 35 кВ приведены экспериментальные кривые спектрального распределения энергии рентгеновского излучения в случае антикатодов из вольфрама, молибдена и хрома. За меру интенсивности излучения принят ток в ионизационной камере. В случае молибдена, наряду со сплошным излучением, возбуждаются две линии характеристического излучения с длинами волн примерно Л = 0,063 и Л = = 0,071 нм. Характеристическое излучение появляется и для хрома, но при более длинных волнах, не укладывающихся на рисунке. Но в случае вольфрама напряжения 35 кВ недостаточно для возбуждения характеристического излучения в диапазоне волн, приведенном на рисунке, — получается только сплошной спектр.
Характеристический спектр рентгеновского
излучения состоит из серий линий, которые
обозначаются буквами K,L,M,N,О. Серия К
возникает при переходах возбужденного
атома с уровня К на лежащие ниже подуровни
слоев L, M, N, . . .; серия L — при аналогичных
переходах с подуровней слоя L; серия М
— при переходах с подуровней слоя М и
т. д. Как видно из рисунка, линии серии
К имеют дублетную структуру. Компоненты
дублетов обозначаются соответственно
через
2.
Серии L,M,N имеют более сложную мультиплетную
структуру. Для линий этих мультиплетов
применяются также обозначения греческими
буквами с индексами. Буква
указывает, что переход совершился с
ближайшего слоя, буква
— со следующего после ближайшего и т.д.
Цифровые индексы при буквах
меруют
линии в порядке убывания длин волн. Из
приведенного объяснения возникновения
характеристического рентгеновского
излучения следует, что при возбуждении
наиболее глубоко лежащего слоя К
возникает не только серия К, но и весь
рентгеновский спектр. Вообще, при
возбуждении какой-либо серии или линии
рентгеновского излучения появляются
и все серии и линии рентгеновского
излучения с большими длинами волн. При
освобождении электрона из какой-либо
внутренней оболочки электрон за пределами
атома может обладать каким угодно
запасом кинетической энергии. В этом
случае его энергия в конечном состоянии
не квантуется. При переходе из этого
неквантованного состояния на одно из
свободных мест в оболочках атома
возникает сплошное рентгеновское
излучение.
В отличие от оптических линейчатых спектров с их сложностью и разнообразием, рентгеновские характеристические спектры различных элементов характеризуются простотой и однообразием. Это связано с тем, что при переходе от одного элемента к следующему структура внутренних электронных оболочек атома изменяется очень мало. При возрастании зарядового числа Z на единицу рентгеновский характеристический спектр элемента сохраняет свой вид; происходит лишь незначительное смещение всех рентгеновских линий в сторону более коротких волн. Эта особенность рентгеновских спектров впервые была обнаружена экспериментально Мозли в 1913 г. и истолкована им на основе теории Бора. Мозли систематически исследовал К- и L-серии рентгеновского излучения 38 различных элементов. Он пользовался кристаллическим спектрографом, работавшим по принципу брэгговских отражений, в котором вместо ионизационной камеры была использована фотопластинка.
Исследования Мозли впервые экспериментально показали, что основной величиной, определяющей место элемента в периодической таблице, является не атомная масса, а атомный номер элемента. Вместе с тем характеристические рентгеновские спектры позволяют однозначно определять атомные номера элементов и таким образом судить, заполнены ли в периодической таблице все места или должны существовать еще не открытые элементы.