
- •1. Обеспечение электромагнитной совместимости рэс
- •1.1. Сущность обеспечения эмс
- •1). Радиочастотный ресурс (рчр)
- •2). Непреднамеренные электромагнитные помехи (нэмп)
- •3). Характеристики эмс
- •4). Электромагнитная обстановка
- •5). Методы и способы обеспечения эмс
- •1.2. Основные понятия эмс
- •1.3. Нормативно-техническая документация по эмс
- •1.4. Принципы обеспечения эмс при разработке и эксплуатации рэс
- •1. Экранирование:
- •2. Фильтрация помех:
- •3. Заземление:
- •4. Монтажные соединения:
- •5. Элементная база:
- •6. Защита от молний (мощный электромагнитный импульс):
- •1.5. Основные принципы электродинамики
- •1.5.1. Электромагнитное поле и его характеристики
- •1.5.2. Электромагнитные свойства сред
- •5.5.3. Уравнения Максвелла и их физический смысл
- •5.5.4. Классификация электромагнитных полей
- •Электромагнитные поля, созданные постоянным током.
- •5.5.5. Электромагнитное поле в диэлектриках и проводниках. Основные характеристики электромагнитного поля
- •5.6. Конструирование электромагнитных экранов
- •5.6.1. Структура помехонесущих электромагнитных полей
- •5.6.2. Виды и сущность электромагнитного экранирования
- •5.6.3. Основные характеристики экранов
- •5.6.4. Расчет и конструирование электростатических экранов
- •5.6.5. Расчет и конструирование магнитостатических экранов
- •5.6.6. Многослойное экранирование
- •5.6.7. Расчет и конструирование электромагнитных экранов
- •5.6.8. Перфорированные экраны
- •5.6.9. Сетчатые экраны
- •5.6.10. Контактные соединения и эффективность экранирования
- •5.7. Инженерные формулы расчета эффективности экранирования реальных конструкций экранов
- •5.7.1. Расчет ээ электрически толстых экранов
- •5.7.2. Расчет ээ электрически тонких экранов
- •5.7.3. Расчет ээ перфорированных экранов
- •5.7.4. Расчет ээ сетчатых экранов
- •5.7.5. Расчет ээ токопроводящей краски
- •5.8. Материалы для экранов
- •5.8.1. Металлические материалы
- •5.8.2. Металлизированные поверхности
- •5.8.3. Стекла с токопроводящим покрытием
- •5.8.4. Специальные ткани
- •5.8.5. Радиопоглощающие материалы (рпм)
- •5.8.6. Токопроводящие краски
- •5.8.7. Электропроводный клей
- •5.9. Фильтрация электрических цепей
- •Э квивалентная схема фильтра Вносимое затухание
- •5.9.1. Элементы фильтров
- •5.10. Заземление
- •5.10.1. Способы заземления
- •Список использованной литературы
5.9.1. Элементы фильтров
Конденсаторы. Применяются как самостоятельные помехоподавляющие элементы и как параллельные звенья фильтров. Конструктивно помехоподавляющие конденсаторы делятся на:
двухполюсные (с двумя выводами);
опорные (одним из выводов является металлический корпус);
проходные некоаксиальные (все выводы являются токонесущими);
проходные коаксиальные (центральный вывод токонесущий проводник, другой – металлический корпус);
конденсаторные блоки (конструктивно выполнены в одном корпусе).
При выборе типа и номинальной величины емкости конденсатора следует выполнять следующие условия:
и
,
(5.111)
где Rk – модуль сопротивления конденсатора;
Lш – индуктивность шины питания;
n – кратность уменьшения помех;
τф – длительность переднего фронта сигнала помехи.
Помехоподавляющие дроссели могут использоваться в качестве самостоятельных устройств фильтрации и в виде составных частей фильтра. Они устанавливаются непосредственно на источнике помех или вблизи и в фильтрах нижних частот включаются последовательно в провод, по которому распространяются помехи. Качеством дросселя в значительной степени определяются достоинства фильтра.
Характерной особенностью работы дросселей в защитных фильтрах является то, что они должны обладать достаточно большим сопротивлением в широком диапазоне частот. Однако для выполнения этого требований на низких частотах необходимо делать катушки со значительной индуктивностью и большим числом витков, в результате чего возрастает собственная емкость катушек, уменьшающая их сопротивление на высоких частотах. Применение в катушках секционированных обмоток снижает их собственную емкость, но уменьшает и индуктивность. Таким образом, следует искать компромиссное решение. Во избежание потерь надо стремиться к тому, чтобы активное сопротивление катушки было минимальным.
При конструировании дросселей для фильтров систем экранирования следует также помнить об обеспечении достаточной механической прочности, изоляции и влагоустойчивости. Кроме того, следует стремиться к сокращению габаритов катушки, к обеспечению большой поверхности охлаждения для ограничения нагрева, к уменьшению расхода цветных металлов, например, меди и изоляционных материалов. В некоторых случаях осуществляется экранирование дросселей. Обычно собственная частота дросселя подбирается равной средней частоте защищаемого диапазона. Чтобы частотная характеристика фильтра была по возможности равномерной в требуемом диапазоне частот, не следует применять больших индуктивностей. В большинстве случаев индуктивность дросселей не должна превышать 500 мкГ, при этом их конструкцию оформляют таким образом, чтобы собственная емкость не превышала 100 пФ.
В качестве помехоподавляющих дросселей могут применяться любые катушки, имеющие необходимые частотные характеристики полного сопротивления. Дроссель может быть как с ферромагнитным сердечником, так и без него. В качестве материала для сердечника рекомендуется сталь ВЧ-2, магнитная проницаемость которой сохраняет значительную величину в области высоких частот. Для обеспечения высокой проницаемости на высоких частотах при небольших протекающих по дросселю токах рекомендуется в качестве сердечника использовать ферриты, которые coxpaняют необходимую величину индуктивности, позволяют значительно уменьшить габариты (число витков) дросселя.
Для определения индуктивности катушки круглого сечения можно воспользоваться соотношением
,
[мкГн] при
l >0,3
D; (5.112)
,
при
l
>> D,
где n – число витков; D – диаметр катушки, см; l – длина катушки, см.
При фильтрации сетей электропитания большой мощности используют безвитковые дроссели в виде прямолинейных токопроводящих стержней, окруженных толстостенным трубчатым магнитопроводом из ферромагнетиков.
Индуктивность такого дросселя определяется магнитным потоком, проходящим по трубе:
,
(5.113)
где μr – начальная магнитная проницаемость, мкГн/м;
h – длина магнитопровода, м;
d2, d1 – наружный и внутренний диаметры трубы.
Рекомендации к конструкции и монтажу фильтров:
Фильтр, как правило, необходимо экранировать (кроме емкостного). Обычно экраном служит корпус самого фильтра.
Входные и выходные проводники должны находиться с противоположных сторон как можно дальше и проходить вне корпуса. Экранирующая оплетка или труба (если они есть) должны иметь надежный контакт с корпусом фильтра по всему периметру отверстия для ввода (вывода) провода.
Необходимо уделять большое внимание экранированию входных и выходных цепей фильтра, включая входной и выходной конденсаторы.
Следует избегать расположения элементов фильтра на съемных частях корпуса.
Необходимо правильно размещать проходные конденсаторы.
Обычные конденсаторы лучше монтировать проходным способом, т.е. помехонесущий провод необходимо крепить непосредственно к выводу конденсатора. Соединение выполнять коротким проводом не более 10-15 мм и диаметром не менее 2 мм.
Крепление конденсаторов и дросселей должно быть прочным и вибропрочным.
Нельзя использовать вводы конденсатора для его механического крепления.
Помехоподавляющие элементы необходимо размещать так, чтобы был обеспечен хороший доступ для осмотра и замены.
Конденсаторы, которые при отключении аппаратуры от сети питания могут быть заряжены, должны иметь разрядные сопротивления со временем разряда не более 10 с.