
- •1. Обеспечение электромагнитной совместимости рэс
- •1.1. Сущность обеспечения эмс
- •1). Радиочастотный ресурс (рчр)
- •2). Непреднамеренные электромагнитные помехи (нэмп)
- •3). Характеристики эмс
- •4). Электромагнитная обстановка
- •5). Методы и способы обеспечения эмс
- •1.2. Основные понятия эмс
- •1.3. Нормативно-техническая документация по эмс
- •1.4. Принципы обеспечения эмс при разработке и эксплуатации рэс
- •1. Экранирование:
- •2. Фильтрация помех:
- •3. Заземление:
- •4. Монтажные соединения:
- •5. Элементная база:
- •6. Защита от молний (мощный электромагнитный импульс):
- •1.5. Основные принципы электродинамики
- •1.5.1. Электромагнитное поле и его характеристики
- •1.5.2. Электромагнитные свойства сред
- •5.5.3. Уравнения Максвелла и их физический смысл
- •5.5.4. Классификация электромагнитных полей
- •Электромагнитные поля, созданные постоянным током.
- •5.5.5. Электромагнитное поле в диэлектриках и проводниках. Основные характеристики электромагнитного поля
- •5.6. Конструирование электромагнитных экранов
- •5.6.1. Структура помехонесущих электромагнитных полей
- •5.6.2. Виды и сущность электромагнитного экранирования
- •5.6.3. Основные характеристики экранов
- •5.6.4. Расчет и конструирование электростатических экранов
- •5.6.5. Расчет и конструирование магнитостатических экранов
- •5.6.6. Многослойное экранирование
- •5.6.7. Расчет и конструирование электромагнитных экранов
- •5.6.8. Перфорированные экраны
- •5.6.9. Сетчатые экраны
- •5.6.10. Контактные соединения и эффективность экранирования
- •5.7. Инженерные формулы расчета эффективности экранирования реальных конструкций экранов
- •5.7.1. Расчет ээ электрически толстых экранов
- •5.7.2. Расчет ээ электрически тонких экранов
- •5.7.3. Расчет ээ перфорированных экранов
- •5.7.4. Расчет ээ сетчатых экранов
- •5.7.5. Расчет ээ токопроводящей краски
- •5.8. Материалы для экранов
- •5.8.1. Металлические материалы
- •5.8.2. Металлизированные поверхности
- •5.8.3. Стекла с токопроводящим покрытием
- •5.8.4. Специальные ткани
- •5.8.5. Радиопоглощающие материалы (рпм)
- •5.8.6. Токопроводящие краски
- •5.8.7. Электропроводный клей
- •5.9. Фильтрация электрических цепей
- •Э квивалентная схема фильтра Вносимое затухание
- •5.9.1. Элементы фильтров
- •5.10. Заземление
- •5.10.1. Способы заземления
- •Список использованной литературы
5.6.6. Многослойное экранирование
Многослойные комбинированные экраны, состоящие из последовательно чередующихся немагнитных (медь, алюминий, латунь) и магнитных (сталь, пермаллой) слоев, применяются для получения высокой ЭЭ в широком частотном диапазоне, включая область низких частот, особенно при экранировании магнитных полей большой напряженности.
В этих случаях хорошие результаты дает использование многослойных экранов (2-х, 3-х и более). Чтобы исключить насыщение, слой составного двухслойного экрана, обращенный к источнику магнитного поля, выполняется из материала с низкой магнитной проницаемостью (он имеет высокий уровень насыщения) или немагнитного металла, а второй слой - из материала с высокой магнитной проницаемостью, имеющий низкий уровень насыщения.
В основе работы многослойного экрана лежит принцип многократного отражения от слоев крана, имеющих различные значения характеристических сопротивлений. В результате экран, состоящий из нескольких тонких слоев различных металлов, обладает большей эффективностью экранирования (особенно в низкочастотной области), чем однородный экран той же толщины. Коэффициент экранирования (подавления) двухслойного экрана определяется выражением /22/
Кэ12 = К1под К2под /(1- К1отр К2отр), (5.84)
где К1под, К2под - коэффициенты подавления при прохождении электромагнитного поля через стенки 1 и 2 экрана соответственно;
К1отр, К2отр - коэффициенты отражения электромагнитной волны от границы разделов 1 и 2 экранов соответственно.
Для трехслойного экрана выражение для определения коэффициента экранирования имеет вид
Кэ123 = К1под К2под К3под /[(1- К1отр К2отр)( 1- К2отр К3отр) - К1отр К3отр К2 2под].
(5.85)
На основании анализа расчетов и практических результатов можно сформулировать следующие рекомендации по конструированию многослойных экранов:
слои многослойного экрана, обращенные к источнику магнитного поля следует выполнять из немагнитных материалов. Наилучшие результаты дает экран с сочетанием слоев из немагнитных и магнитных материалов (медь-сталь, медь-сталь-медь и т.д.);
применение диэлектрических прокладок (пластмасса, картон, бумага) или воздушных зазоров между металлическими слоями экрана может приводить к повышению ЭЭ, если их толщина значительно превышает толщину металлических слоев;
при выборе оптимального соотношения толщин слоев в экране медь-сталь необходимо рассматривать следующие характерные области (рисунок 5.12):
а) частоты от 0 до 0,5 кГц - наибольшая эффективность экранирования обеспечивается однородным стальным экраном, т.к. стальной слой работает в магнитостатическом режиме;
б) частоты от 0,5 до 10 кГц - наибольшая эффективность экранирования обеспечивается при равной толщине медного и стального слоев.
В этом случае медный слой переходит в электромагнитный режим работы, а стальной продолжает работать в магнитостатическом режиме;
в) частоты от 10 до 1000 кГц - медный и стальной слои работают в электромагнитном режиме, поскольку с возрастанием частоты оптимальная толщина медного слоя уменьшается, а стального увеличивается за счет большого влияния поглощения;
г) частоты свыше 1000 кГц - составной экран нецелесообразен, т.к. ЭЭ обеспечивается однородным стальным экраном.
1
0,8 I II III
0,7 - Сталь
0,6
- Медь
0,5
0,4
0,3
0,2
0,1
0 2 10 20 35 55 110 140 f, кГц
Рисунок 5.12. Оптимальные соотношения толщин слоев двухслойного
экрана медь-сталь