
- •1. Обеспечение электромагнитной совместимости рэс
- •1.1. Сущность обеспечения эмс
- •1). Радиочастотный ресурс (рчр)
- •2). Непреднамеренные электромагнитные помехи (нэмп)
- •3). Характеристики эмс
- •4). Электромагнитная обстановка
- •5). Методы и способы обеспечения эмс
- •1.2. Основные понятия эмс
- •1.3. Нормативно-техническая документация по эмс
- •1.4. Принципы обеспечения эмс при разработке и эксплуатации рэс
- •1. Экранирование:
- •2. Фильтрация помех:
- •3. Заземление:
- •4. Монтажные соединения:
- •5. Элементная база:
- •6. Защита от молний (мощный электромагнитный импульс):
- •1.5. Основные принципы электродинамики
- •1.5.1. Электромагнитное поле и его характеристики
- •1.5.2. Электромагнитные свойства сред
- •5.5.3. Уравнения Максвелла и их физический смысл
- •5.5.4. Классификация электромагнитных полей
- •Электромагнитные поля, созданные постоянным током.
- •5.5.5. Электромагнитное поле в диэлектриках и проводниках. Основные характеристики электромагнитного поля
- •5.6. Конструирование электромагнитных экранов
- •5.6.1. Структура помехонесущих электромагнитных полей
- •5.6.2. Виды и сущность электромагнитного экранирования
- •5.6.3. Основные характеристики экранов
- •5.6.4. Расчет и конструирование электростатических экранов
- •5.6.5. Расчет и конструирование магнитостатических экранов
- •5.6.6. Многослойное экранирование
- •5.6.7. Расчет и конструирование электромагнитных экранов
- •5.6.8. Перфорированные экраны
- •5.6.9. Сетчатые экраны
- •5.6.10. Контактные соединения и эффективность экранирования
- •5.7. Инженерные формулы расчета эффективности экранирования реальных конструкций экранов
- •5.7.1. Расчет ээ электрически толстых экранов
- •5.7.2. Расчет ээ электрически тонких экранов
- •5.7.3. Расчет ээ перфорированных экранов
- •5.7.4. Расчет ээ сетчатых экранов
- •5.7.5. Расчет ээ токопроводящей краски
- •5.8. Материалы для экранов
- •5.8.1. Металлические материалы
- •5.8.2. Металлизированные поверхности
- •5.8.3. Стекла с токопроводящим покрытием
- •5.8.4. Специальные ткани
- •5.8.5. Радиопоглощающие материалы (рпм)
- •5.8.6. Токопроводящие краски
- •5.8.7. Электропроводный клей
- •5.9. Фильтрация электрических цепей
- •Э квивалентная схема фильтра Вносимое затухание
- •5.9.1. Элементы фильтров
- •5.10. Заземление
- •5.10.1. Способы заземления
- •Список использованной литературы
5.6. Конструирование электромагнитных экранов
Для снижения уровней ЭМП и обеспечения ЭМС применяются следующие основные методы:
рациональная компоновка (оптимальное пространственное размещение и ориентация);
экранирование;
фильтрация;
заземление;
компенсация.
К экранам, помимо требования обеспечения эффективности экранирования, предъявляются дополнительные требования, связанные с особенностями РЭС/8/:
экран является внешним кожухом РЭС и, исходя из общего ТЗ, при его проектировании должны учитываться требования обеспечения нормального теплового режима, пыле- и влагозащиты, устойчивости к механическим воздействиям, эргономики, технологичности, ремонтопригодности и др.;
при экранировании отдельных элементов и узлов форма и размеры этих элементов определяют конструкцию экрана. При этом экран должен компоноваться в общем устройстве и обеспечивать минимальную реакцию на экранируемый объект, а также нормальный тепловой режим элементов и узлов РЭС, ремонтопригодность и т.д.;
экран проектируется как самостоятельное сооружение в случае защиты от внешних ЭМП или локализации излучений аппаратуры или целого радиоэлектронного комплекса, для специальных радиотехнических измерений, а также для настройки и регулировки аппаратуры (безэховые камеры).
Необходимо отметить, что экранирование является одним из эффективных средств защиты и повышения стойкости РЭС к действию мощного ЭМИ, возникающего при ядерных взрывах, а также грозовых разрядах.
5.6.1. Структура помехонесущих электромагнитных полей
Как известно, в РЭС применяются функциональные узлы (ФУ) различного назначения, которые могут работать в линейном и нелинейном режимах, различных частотных диапазонах, иметь различную мощность, восприимчивость, конструкцию и т.д. Это приводит к образованию ЭМП и их переносу электромагнитным и кондуктивным (гальваническим) путем. В этом случае ФУ, не предназначенные для генерации и излучения, могут иметь небольшие эквивалентные действующие высоты при рассмотрении их как передающих антенн. Действующие высоты этих источников ЭМП увеличиваются с ростом частоты.
В общем случае ФУ РЭС можно представить в виде совокупности элементарных электрических и магнитных излучателей (диполей), к которым относятся электрический вибратор (диполь Герца), электрическая рамка (магнитный диполь), элементарная щель и излучатель Гюйгенса. При этом электрическими диполями являются цепи аппаратуры с большим сопротивлением, высоким напряжением и малым током, а магнитными диполями - цепи с низким сопротивлением, большим током и малым перепадом напряжения.
На основании принципа суперпозиции можно считать, что все множество различных элементарных излучателей, в которых протекают случайные токи с различными временными параметрами, возбуждаются синусоидальными токами, являющимися гармониками общего тока, и действие каждой гармоники можно рассматривать отдельно.
Физические свойства помехонесущего электромагнитного поля различны в дальней и ближней зонах. В дальней (волновой) зоне (r >> 0/2 ) структура поля элементарных электрического и магнитного излучателей совпадает со структурой поля однородной плоской волны, у которой в любой точке пространства векторы напряженности электрического и магнитного полей синфазны, ортогональны друг другу и направлению излучения, а характеристическое сопротивление среды (воздуха) Zc0 = 120 .
В ближней зоне (на расстоянии r << 0/2 ) отсутствует излучение, т.к. поле носит квазистационарный характер (см. раздел 5.5). В этом случае для элементарного электрического излучателя электромагнитное поле определяется (из уравнений Максвелла) /20/:
Еr
= -iIe
lcos
/2
ar3;
Е = -iIe lsin /4 ar3; (5.36)
H = Ie lsin /4 r2,
где Ie - амплитуда тока, протекающего вдоль вибратора;
l - длина вибратора;
r - расстояние от точки наблюдения до вибратора;
- угол между продольной осью вибратора и точкой наблюдения.
Используя принцип инвариантности (независимость представления от преобразования системы координат) уравнений Максвелла, можно показать, что поле магнитного излучателя в ближней зоне получается заменой Е, Н, a и Ie на -Н, Е, a и Iм cоответственно:
H
= -iIм
lcos
/2
ar3;
H = -iIм lcos /2 ar3; (5.37)
Е = Iм lsin /4 r2,
где Iм - магнитный ток, величина которого определяется напряжением, действующим по периметру элементарного магнитного вибратора. Анализируя выражения (5.36) и (5.37), можно сделать следующие выводы:
структура поля элементарных электрического и магнитного излучателей отличается взаимным изменением положения векторов Е и Н;
поля ближней зоны элементарных электрических и магнитных диполей существенно неравномерны, а их интенсивности быстро убывают обратно пропорционально кубу и квадрату расстояния соответственно;
составляющие напряженностей электрического и магнитного полей в ближней зоне сдвинуты по фазе на 90°. Поэтому вектор Пойтнинга чисто мнимая величина с нулевым средним значением, а рассматриваемые поля являются реактивными. В результате перенос помех в ближней зоне происходит за счет электрической и магнитной индукции;
вблизи элементарного электрического диполя создается электромагнитное поле, основная энергия которого сосредоточена в электрической составляющей (электрическое поле);
характеристическое сопротивление среды полю элементарного электрического диполя в ближней зоне в соответствии с (5.36)
Ze
= E
/H
= 1/i
ar;
(5.38)
вблизи элементарного магнитного диполя создается электромагнитное поле, основная энергия которого сосредоточена в магнитной составляющей (магнитное поле);
характеристическое сопротивление среды полю магнитного диполя в ближней зоне в соответствии с (5.37)
ZH = E /H = -i ar; (5.39)
характеристическое сопротивление Zе с увеличением расстояния от него уменьшается, а Zн увеличивается, и оба стремятся к значению Zc0 = 120 = 377 Ом, достигая его в дальней зоне при r >> 0/2 .
График зависимостей Zе и Zн от расстояния приведен на рисунке 5.2.
Zc, Ом
3000
377
300
100
30
Рисунок 5.2. Зависимость характеристического сопротивления среды электромагнитному полю от расстояния до элементарного излучателя
1 - поле электрического диполя в ближней зоне; 2 - поле магнитного диполя в ближней зоне; 3 - поле электрического и магнитного диполей в дальней зоне
В соответствии с рассмотренными особенностями электромагнитного поля в дальней и ближней зонах экраны, предназначенные для его ослабления, делятся на электромагнитные (ЭМЭ), электростатические (ЭСЭ) и магнитостатические (МСЭ). Как мы уже отмечали, при расчете ЭМЭ используется теория электромагнитного поля, основанная на решении уравнений Максвелла. Для анализа экранов, предназначенных для работы в ближней зоне, т.е. существующих отдельно электрических и магнитных полей, применяют более простые методы (основанные на решениях уравнения Максвелла для частных случаев) с использованием представлений о взаимных емкостях и индуктивностях между экранируемыми друг от друга элементами.
В пределах одного устройства выполняется в большинстве случаев (исключение ВЧ и СВЧ аппаратура) условие ближней зоны электромагнитного поля (r<< 0/2 ).