- •Часть I I
- •Часть I I. Электричество и магнетизм
- •Электрическое поле в вакууме Электрический заряд, атомистичность заряда, элементарный заряд
- •1.2 Закон сохранения заряда
- •1.3 Закон Кулона
- •1.4 Электростатическое поле
- •1.5 Принцип суперпозиции электростатических полей
- •1.6 Силовые линии электростатического поля
- •1.7 Эквипотенциальные поверхности
- •1.8 Связь между напряжённостью поля и потенциалом (градиент потенциала)
- •Потенциал электрического поля.
- •Работа, совершаемая при перемещении заряда в электростатическом поле. Теорема о циркуляции вектора напряжённости электростатического поля
- •1.10 Энергия заряда в электростатическом поле. Потенциал. Разность потенциалов
- •Поток вектора напряженности. Теорема Гаусса.
- •1.12 Применение теоремы Гаусса для расчета электростатических полей.
- •1.12.1 Поле равномерно заряженной бесконечно протяженной плоскости.
- •Поле плоского конденсатора.
- •1.12.3 Поле равномерно заряженной бесконечно длинной прямой нити.
- •1.12.4 Поле равномерно заряженной сферической поверхности радиуса r и заряда q.
- •1.12.5 Поле объемно-заряженного шара
- •Электрический диполь. Диэлектрики в электрическом поле. Сегнетоэлектрики.
- •Диполь в однородном и неоднородном электрических полях
- •3. Диэлектрики в электрическом поле.
- •3.1 Диэлектрики. Полярные и неполярные молекулы.
- •3.2 Характеристики, вводимые для описания электрического поля в присутствии диэлектриков
- •3.3 Неполярный диэлектрик во внешнем электрическом поле.
- •3.4 Полярный диэлектрик во внешнем электрическом поле.
- •3.5 Физический смысл теоремы Гаусса для векторов и .
- •Проводники в электрическом поле. Электроемкость.
- •Проводники в электрическом поле Распределение избыточного заряда на проводниках в состоянии равновесия.
- •4.2 Незаряженный проводник во внешнем электрическом поле.
- •4.3 Электроёмкость проводника
- •4.4 Конденсаторы. Электроёмкость конденсаторов.
- •Энергия электростатического поля.
- •Энергия электростатического поля Энергия системы зарядов.
- •5.2 Энергия заряженного проводника.
- •5.3 Энергия заряженного конденсатора
- •5.4 Энергия электростатического поля.
- •Законы постоянного тока.
- •Постоянный ток. Сила тока, плотность тока.
- •6.2 Закон Ома для однородного участка цепи. Сопротивление проводников. Понятие о сверхпроводимости.
- •6.3 Источники тока. Эдс источника тока. Напряжение. Закон Ома для неоднородного участка цепи.
- •6.4 Работа, мощность и тепловое действие постоянного тока.
- •6.5 Законы Ома и Джоуля-Ленца в дифференциальной форме.
- •6.6 Правила Кирхгофа.
- •Элементы классической теории проводимости.
- •Природа носителей тока в металлах.
- •2.11. Основные положения классической электронной теории проводимости металлов Друде – Лоренца.
- •2.12. Вывод законов Ома, Джоуля-Ленца и Видемана-Франца на основе теории Друде-Лоренца.
- •2.13. Затруднения классической теории электропроводности металлов. Сверхпроводимость металлов. Открытие высокотемпературной сверхпроводимости.
- •Магнитное поле.
- •Действие магнитного поля на токи и заряды.
- •Теорема Гаусса. Теорема Ампера о циркуляции.
- •Поток вектора магнитной индукции. Теорема Гаусса в магнитостатике.
- •3.11. Теорема о циркуляции магнитного поля. Магнитное напряжение.
- •3.12. Магнитное поле соленоида и тороида.
- •1) Магнитное поле на оси прямого длинного соленоида.
- •2) Магнитное поле на оси тороида.
- •Электродинамика.
- •Магнитное поле в веществе.
- •Элементы квантовой электронной теории проводимости. Термоэлектронная эмиссия и контактные явления.
- •Свободные колебания в контуре без активного сопротивления. Собственные и вынужденные электромагнитные колебания.
- •Колебательный контур. Собственные колебания в контуре.
- •9.2 Свободные затухающие колебания.
- •Вынужденные электрические колебания
- •Переменный ток.
- •Метод векторных диаграмм.
- •5.4. Резонансные явления в колебательном контуре. Резонанс напряжений и резонанс токов.
- •Взаимное превращение электрических и магнитных полей. Уравнения Максвелла.
- •Электромагнитные волны.
- •Электромагнитные волны.
3. Диэлектрики в электрическом поле.
3.1 Диэлектрики. Полярные и неполярные молекулы.
К диэлектрикам относят вещества, практически не проводящие электрического тока. Это значит, что в диэлектриках в отличие, например, от проводников нет зарядов, способных перемещаться на значительные (в сравнении с размерами самих молекул) расстояния, создавая ток. Диэлектрики состоят либо из нейтральных молекул, либо из ионов, находящихся в узлах кристаллической решетки (например, NaCl). Сами молекулы могут быть полярными и неполярными.
Положительный заряд молекулы равен суммарному заряду ядер и помещается в «центре тяжести» положительных зарядов; отрицательный заряд равен суммарному заряду электронов и помещается в «центре тяжести» отрицательных зарядов.
Д
ля
симметричных молекул (молекулы кислорода
О2,
водорода Н2,
гелия Не и т.д.) в отсутствие электрического
поля центры положительных и отрицательных
зарядов совпадают, поэтому собственный
дипольный момент молекулы
равен нулю. Такие молекулы называются
неполярными
(рис.3.1.а).
При внесении такой молекулы во внешнее
электрическое поле индуцируется
дипольный момент
(рис. 3.1. б).
У несимметричных молекул (таких как вода H2O, соляная кислота, аммиак и т.д.) в отсутствие электрического поля центры положительных и отрицательных зарядов не совпадают, такие молекулы обладают собственным дипольным моментом и называются полярными.
3.2 Характеристики, вводимые для описания электрического поля в присутствии диэлектриков
Поляризация. Под действием внешнего электрического поля происходит поляризация диэлектрика. Независимо от строения диэлектрика в процессе поляризации все положительные заряды смещаются по полю, а отрицательные против поля. Как правило, смещения зарядов малы даже по сравнению с размерами молекул, это связано с тем, что напряженность внешнего поля, действующего на диэлектрик, значительно меньше напряженности внутренних электрических полей в молекулах.
Связанные и сторонние заряды. При наличии внешнего электростатического поля на поверхности диэлектрика появляются нескомпенсированные заряды. Они находятся внутри молекул и не могут свободно перемещаться внутри диэлектрика, поэтому их называют связанными.
Заряды, которые не входят в состав молекул диэлектрика, называют сторонними. Эти заряды могут находиться как внутри, так и вне диэлектрика.
Поле в диэлектрике. Полем внутри диэлектрика будем называть величину, являющуюся суперпозицией поля
сторонних зарядов и поля
связанных зарядов:
. (3.1)
Диэлектрическая проницаемость среды
показывает, во сколько раз модуль
напряженности
поля в вакууме больше модуля напряженности
поля внутри диэлектрика:
. (3.2)
Формула (3.2) справедлива для однородного изотропного диэлектрика.
Когда между векторами и угол равен 1800, выражение (3.1) примет вид:
. (3.3)
В зависимости от формы диэлектрика и его расположения во внешнем электрическом поле угол между векторами и может изменяться, но всегда внутри диэлектрика электрическое поле связанных зарядов ослабляет внешнее электрическое поле (Е<E0).
Поляризованность диэлектрика
равна векторной сумме дипольных моментов
молекул, находящихся в единице объема
диэлектрика:
. (3.4)
Поляризованность описывает способность диэлектрика создавать свое собственное поле . Можно показать, что
. (3.5)
Опытным путем была установлена формула
, (3.6)
где
– диэлектрическая восприимчивость
диэлектрика, ε0
– электрическая постоянная.
Вектор электрического смещения (электрической индукции)
вводится
формулой
. (3.7)
Используя (3.6), можно записать:
,
,
(3.8)
Формула (3.8) устанавливает связь между вектором электрического смещения и напряженностью поля внутри диэлектрика.
