
- •Часть I I
- •Часть I I. Электричество и магнетизм
- •Электрическое поле в вакууме Электрический заряд, атомистичность заряда, элементарный заряд
- •1.2 Закон сохранения заряда
- •1.3 Закон Кулона
- •1.4 Электростатическое поле
- •1.5 Принцип суперпозиции электростатических полей
- •1.6 Силовые линии электростатического поля
- •1.7 Эквипотенциальные поверхности
- •1.8 Связь между напряжённостью поля и потенциалом (градиент потенциала)
- •Потенциал электрического поля.
- •Работа, совершаемая при перемещении заряда в электростатическом поле. Теорема о циркуляции вектора напряжённости электростатического поля
- •1.10 Энергия заряда в электростатическом поле. Потенциал. Разность потенциалов
- •Поток вектора напряженности. Теорема Гаусса.
- •1.12 Применение теоремы Гаусса для расчета электростатических полей.
- •1.12.1 Поле равномерно заряженной бесконечно протяженной плоскости.
- •Поле плоского конденсатора.
- •1.12.3 Поле равномерно заряженной бесконечно длинной прямой нити.
- •1.12.4 Поле равномерно заряженной сферической поверхности радиуса r и заряда q.
- •1.12.5 Поле объемно-заряженного шара
- •Электрический диполь. Диэлектрики в электрическом поле. Сегнетоэлектрики.
- •Диполь в однородном и неоднородном электрических полях
- •3. Диэлектрики в электрическом поле.
- •3.1 Диэлектрики. Полярные и неполярные молекулы.
- •3.2 Характеристики, вводимые для описания электрического поля в присутствии диэлектриков
- •3.3 Неполярный диэлектрик во внешнем электрическом поле.
- •3.4 Полярный диэлектрик во внешнем электрическом поле.
- •3.5 Физический смысл теоремы Гаусса для векторов и .
- •Проводники в электрическом поле. Электроемкость.
- •Проводники в электрическом поле Распределение избыточного заряда на проводниках в состоянии равновесия.
- •4.2 Незаряженный проводник во внешнем электрическом поле.
- •4.3 Электроёмкость проводника
- •4.4 Конденсаторы. Электроёмкость конденсаторов.
- •Энергия электростатического поля.
- •Энергия электростатического поля Энергия системы зарядов.
- •5.2 Энергия заряженного проводника.
- •5.3 Энергия заряженного конденсатора
- •5.4 Энергия электростатического поля.
- •Законы постоянного тока.
- •Постоянный ток. Сила тока, плотность тока.
- •6.2 Закон Ома для однородного участка цепи. Сопротивление проводников. Понятие о сверхпроводимости.
- •6.3 Источники тока. Эдс источника тока. Напряжение. Закон Ома для неоднородного участка цепи.
- •6.4 Работа, мощность и тепловое действие постоянного тока.
- •6.5 Законы Ома и Джоуля-Ленца в дифференциальной форме.
- •6.6 Правила Кирхгофа.
- •Элементы классической теории проводимости.
- •Природа носителей тока в металлах.
- •2.11. Основные положения классической электронной теории проводимости металлов Друде – Лоренца.
- •2.12. Вывод законов Ома, Джоуля-Ленца и Видемана-Франца на основе теории Друде-Лоренца.
- •2.13. Затруднения классической теории электропроводности металлов. Сверхпроводимость металлов. Открытие высокотемпературной сверхпроводимости.
- •Магнитное поле.
- •Действие магнитного поля на токи и заряды.
- •Теорема Гаусса. Теорема Ампера о циркуляции.
- •Поток вектора магнитной индукции. Теорема Гаусса в магнитостатике.
- •3.11. Теорема о циркуляции магнитного поля. Магнитное напряжение.
- •3.12. Магнитное поле соленоида и тороида.
- •1) Магнитное поле на оси прямого длинного соленоида.
- •2) Магнитное поле на оси тороида.
- •Электродинамика.
- •Магнитное поле в веществе.
- •Элементы квантовой электронной теории проводимости. Термоэлектронная эмиссия и контактные явления.
- •Свободные колебания в контуре без активного сопротивления. Собственные и вынужденные электромагнитные колебания.
- •Колебательный контур. Собственные колебания в контуре.
- •9.2 Свободные затухающие колебания.
- •Вынужденные электрические колебания
- •Переменный ток.
- •Метод векторных диаграмм.
- •5.4. Резонансные явления в колебательном контуре. Резонанс напряжений и резонанс токов.
- •Взаимное превращение электрических и магнитных полей. Уравнения Максвелла.
- •Электромагнитные волны.
- •Электромагнитные волны.
1.12.3 Поле равномерно заряженной бесконечно длинной прямой нити.
-Для равномерно заряженной нити во всех её точках линейная плотность заряда
будет одинаковой, поэтому поле имеет осевую симметрию: линии вектора представляют собой прямые, выходящие из нити и лежащие в плоскостях, перпендикулярных к ней (рис.1.13 а). На одинаковых расстояниях от нити, т.е. на цилиндрической поверхности, модуль будет одинаковым.
-Поверхность интегрирования выбирают цилиндрическую, ось которой совпадает с нитью. Поток вектора через основания цилиндра равен нулю (линии напряженности их не пересекают), поэтому остается поток только через боковую поверхность и согласно (1.18) получим:
,
где r радиус цилиндра (расстояние от нити до точки, где определяется напряженность); h – высота цилиндрической поверхности.
-Определяем заряд внутри цилиндрической поверхности:
.
Применяем теорему Гаусса (1.21):
,
откуда
.
На (рис. 1.13 б) приведен график зависимости модуля вектора от расстояния от нити до точки, в которой он определяется.
Используя связь между потенциалом и напряженностью поля (1.7) можно определить разность потенциалов между двумя точками поля, находящимися на расстояниях и от нити (рис. 1.13 а):
а)
|
|
Рис. 1.13 Поле бесконечной равномерно заряженной нити |
В заключение отметим, что приведенные выводы справедливы для нити конечной длины при условии, что её длина значительно больше расстояния от нити до точки, в которой определяется напряженность.
1.12.4 Поле равномерно заряженной сферической поверхности радиуса r и заряда q.
Поле сферической поверхности обладает центральной симметрией – линии вектора представляют собой прямые, выходящие из поверхности, перпендикулярные к ней (рис.1.14). Вне сферы на одинаковых расстояниях от ее центра модуль вектора будет одинаковым.
Поверхность интегрирования выбираем в виде сферы, центр которой совпадает с центром заряженной сферы (точка О) и имеющей радиус r. Поток вектора через эту сферу (1.18):
;
.
|
б) |
|
|
Рис. 1.14 К определению характеристик поля заряженной сферической поверхности: а) равномерно заряженная сферическая поверхность; б) зависимости Е (r ) и φ (r ) |
Если
, внутрь поверхности попадает весь заряд q, создающий рассматриваемое поле и по теореме Гаусса (1.21):
,
откуда
,
Если
, то замкнутая поверхность не содержит внутри зарядов, поэтому внутри равномерно заряженной сферической поверхности электростатическое поле отсутствует.
Если
справедливы следующие равенства:
где - поверхностная плотность заряда, согласно (1.24):
Т
аким
образом, можно сделать вывод, что внутри
сферы поле отсутствует, а за её пределами
оно совпадает с полем точечного заряда
q,
помещенного в центр сферы.
Г
рафики
зависимости
и
от
,
где
-
расстояние от центра сферы до точки в
которой определяются напряженность и
потенциал поля, приведены на рис. 1.14 б.
С
Рис.
1.15 Поле сферического конденсатора
,
где
.
Разность
потенциалов между сферами определяется
по формуле (1.8):
.
Поле сферического конденсатора в отличие от поля плоского является неоднородным.