
- •Часть I I
- •Часть I I. Электричество и магнетизм
- •Электрическое поле в вакууме Электрический заряд, атомистичность заряда, элементарный заряд
- •1.2 Закон сохранения заряда
- •1.3 Закон Кулона
- •1.4 Электростатическое поле
- •1.5 Принцип суперпозиции электростатических полей
- •1.6 Силовые линии электростатического поля
- •1.7 Эквипотенциальные поверхности
- •1.8 Связь между напряжённостью поля и потенциалом (градиент потенциала)
- •Потенциал электрического поля.
- •Работа, совершаемая при перемещении заряда в электростатическом поле. Теорема о циркуляции вектора напряжённости электростатического поля
- •1.10 Энергия заряда в электростатическом поле. Потенциал. Разность потенциалов
- •Поток вектора напряженности. Теорема Гаусса.
- •1.12 Применение теоремы Гаусса для расчета электростатических полей.
- •1.12.1 Поле равномерно заряженной бесконечно протяженной плоскости.
- •Поле плоского конденсатора.
- •1.12.3 Поле равномерно заряженной бесконечно длинной прямой нити.
- •1.12.4 Поле равномерно заряженной сферической поверхности радиуса r и заряда q.
- •1.12.5 Поле объемно-заряженного шара
- •Электрический диполь. Диэлектрики в электрическом поле. Сегнетоэлектрики.
- •Диполь в однородном и неоднородном электрических полях
- •3. Диэлектрики в электрическом поле.
- •3.1 Диэлектрики. Полярные и неполярные молекулы.
- •3.2 Характеристики, вводимые для описания электрического поля в присутствии диэлектриков
- •3.3 Неполярный диэлектрик во внешнем электрическом поле.
- •3.4 Полярный диэлектрик во внешнем электрическом поле.
- •3.5 Физический смысл теоремы Гаусса для векторов и .
- •Проводники в электрическом поле. Электроемкость.
- •Проводники в электрическом поле Распределение избыточного заряда на проводниках в состоянии равновесия.
- •4.2 Незаряженный проводник во внешнем электрическом поле.
- •4.3 Электроёмкость проводника
- •4.4 Конденсаторы. Электроёмкость конденсаторов.
- •Энергия электростатического поля.
- •Энергия электростатического поля Энергия системы зарядов.
- •5.2 Энергия заряженного проводника.
- •5.3 Энергия заряженного конденсатора
- •5.4 Энергия электростатического поля.
- •Законы постоянного тока.
- •Постоянный ток. Сила тока, плотность тока.
- •6.2 Закон Ома для однородного участка цепи. Сопротивление проводников. Понятие о сверхпроводимости.
- •6.3 Источники тока. Эдс источника тока. Напряжение. Закон Ома для неоднородного участка цепи.
- •6.4 Работа, мощность и тепловое действие постоянного тока.
- •6.5 Законы Ома и Джоуля-Ленца в дифференциальной форме.
- •6.6 Правила Кирхгофа.
- •Элементы классической теории проводимости.
- •Природа носителей тока в металлах.
- •2.11. Основные положения классической электронной теории проводимости металлов Друде – Лоренца.
- •2.12. Вывод законов Ома, Джоуля-Ленца и Видемана-Франца на основе теории Друде-Лоренца.
- •2.13. Затруднения классической теории электропроводности металлов. Сверхпроводимость металлов. Открытие высокотемпературной сверхпроводимости.
- •Магнитное поле.
- •Действие магнитного поля на токи и заряды.
- •Теорема Гаусса. Теорема Ампера о циркуляции.
- •Поток вектора магнитной индукции. Теорема Гаусса в магнитостатике.
- •3.11. Теорема о циркуляции магнитного поля. Магнитное напряжение.
- •3.12. Магнитное поле соленоида и тороида.
- •1) Магнитное поле на оси прямого длинного соленоида.
- •2) Магнитное поле на оси тороида.
- •Электродинамика.
- •Магнитное поле в веществе.
- •Элементы квантовой электронной теории проводимости. Термоэлектронная эмиссия и контактные явления.
- •Свободные колебания в контуре без активного сопротивления. Собственные и вынужденные электромагнитные колебания.
- •Колебательный контур. Собственные колебания в контуре.
- •9.2 Свободные затухающие колебания.
- •Вынужденные электрические колебания
- •Переменный ток.
- •Метод векторных диаграмм.
- •5.4. Резонансные явления в колебательном контуре. Резонанс напряжений и резонанс токов.
- •Взаимное превращение электрических и магнитных полей. Уравнения Максвелла.
- •Электромагнитные волны.
- •Электромагнитные волны.
5.4. Резонансные явления в колебательном контуре. Резонанс напряжений и резонанс токов.
Как следует из приведенных формул, при частоте переменной ЭДС ω, равной
,
амплитудное значение силы тока в
колебательном контуре, принимает
максимальное значение
.
При этом амплитуда напряжения
на активном сопротивлении R
также максимальна и равна
UR0
=I0maxR
=E0. Падения
напряжения на емкости UC
и индуктивности UL
одинаковы по амплитуде, но
противоположны по фазе, и они взаимно
компенсируют друг друга. Это явление,
имеющее место в последовательном
колебательном контуре,
изображенном на рис.16.5, называется
резонансом напряжений. Векторная
диаграмма, соответствующая этому случаю,
показана на рис.16.7.
Рис.16.7. Векторная диаграмма при резонансе напряжений.
Максимальное значение амплитуды напряжения на конденсаторе UC0(ω) достигается при частоте
.
Резонансные кривые для UC0(ω) представлены на рис.16.8. Максимум получается тем выше и острее, чем меньше коэффициент затухания β, то есть чем меньше активное сопротивление R и больше индуктивность контура L.
UC0
E0
ωрез ω0
ω
Рис.16.8. Резонансные кривые UC0(ω).
Если источник переменной ЭДС подключить параллельно конденсатору, то получим колебательный контур, который называется параллельным (рис.16.9).
Рис.16.9. Параллельный колебательный RLC-контур.
В таком контуре при
наблюдается другое резонансное явление,
получившее название резонанса токов.
При резонансе токов токи, текущие
через емкость и индуктивность одинаковы
по амплитуде, но противоположны по
фазе. При этом общий ток в цепи
ЭДС близок к нулю, хотя токи
в самом контуре могут быть очень
велики. Векторная диаграмма,
соответствующая этому случаю, приведена
на рис.16.10.
Рис.16.10. Векторная диаграмма при резонансе токов.
Можно показать, что при резонансе токов
полное сопротивление Z(ω)
параллельного контура максимально и
равно чисто активному сопротивлению
R. Резонансная частота,
при которой Z(ω)
максимально, определяется из условия
равенства нулю реактивной части
комплексного сопротивления
:
ωL(1 – ω2LC) – ωCR2 = 0 ,
откуда
.
Р
езонансные
кривые для амплитудных значений IC0(ω)
тока, текущего через конденсатор,
приведены на рис.16.11.
IC0
ω
ωрез ω0
Рис.16.11. Резонансные кривые IC0(ω).
Резонансные явления в колебательных контурах широко используются в электро- и радиотехнике (резонансные усилители, частотные фильтры и другие). В частности, явление резонанса используется для выделения из сложного сигнала нужной частотной составляющей. Настроив контур (путем изменения его параметров C и/или L) на одну из выбранных частот, можно получить на конденсаторе напряжение, в Q раз превышающее величину напряжения данной частотной составляющей (см. рис.16.8). Такой процесс осуществляется, например, при настройке радиоприемника на нужную длину волны.
Лекция 16 (2 часа)