- •Часть I I
- •Часть I I. Электричество и магнетизм
- •Электрическое поле в вакууме Электрический заряд, атомистичность заряда, элементарный заряд
- •1.2 Закон сохранения заряда
- •1.3 Закон Кулона
- •1.4 Электростатическое поле
- •1.5 Принцип суперпозиции электростатических полей
- •1.6 Силовые линии электростатического поля
- •1.7 Эквипотенциальные поверхности
- •1.8 Связь между напряжённостью поля и потенциалом (градиент потенциала)
- •Потенциал электрического поля.
- •Работа, совершаемая при перемещении заряда в электростатическом поле. Теорема о циркуляции вектора напряжённости электростатического поля
- •1.10 Энергия заряда в электростатическом поле. Потенциал. Разность потенциалов
- •Поток вектора напряженности. Теорема Гаусса.
- •1.12 Применение теоремы Гаусса для расчета электростатических полей.
- •1.12.1 Поле равномерно заряженной бесконечно протяженной плоскости.
- •Поле плоского конденсатора.
- •1.12.3 Поле равномерно заряженной бесконечно длинной прямой нити.
- •1.12.4 Поле равномерно заряженной сферической поверхности радиуса r и заряда q.
- •1.12.5 Поле объемно-заряженного шара
- •Электрический диполь. Диэлектрики в электрическом поле. Сегнетоэлектрики.
- •Диполь в однородном и неоднородном электрических полях
- •3. Диэлектрики в электрическом поле.
- •3.1 Диэлектрики. Полярные и неполярные молекулы.
- •3.2 Характеристики, вводимые для описания электрического поля в присутствии диэлектриков
- •3.3 Неполярный диэлектрик во внешнем электрическом поле.
- •3.4 Полярный диэлектрик во внешнем электрическом поле.
- •3.5 Физический смысл теоремы Гаусса для векторов и .
- •Проводники в электрическом поле. Электроемкость.
- •Проводники в электрическом поле Распределение избыточного заряда на проводниках в состоянии равновесия.
- •4.2 Незаряженный проводник во внешнем электрическом поле.
- •4.3 Электроёмкость проводника
- •4.4 Конденсаторы. Электроёмкость конденсаторов.
- •Энергия электростатического поля.
- •Энергия электростатического поля Энергия системы зарядов.
- •5.2 Энергия заряженного проводника.
- •5.3 Энергия заряженного конденсатора
- •5.4 Энергия электростатического поля.
- •Законы постоянного тока.
- •Постоянный ток. Сила тока, плотность тока.
- •6.2 Закон Ома для однородного участка цепи. Сопротивление проводников. Понятие о сверхпроводимости.
- •6.3 Источники тока. Эдс источника тока. Напряжение. Закон Ома для неоднородного участка цепи.
- •6.4 Работа, мощность и тепловое действие постоянного тока.
- •6.5 Законы Ома и Джоуля-Ленца в дифференциальной форме.
- •6.6 Правила Кирхгофа.
- •Элементы классической теории проводимости.
- •Природа носителей тока в металлах.
- •2.11. Основные положения классической электронной теории проводимости металлов Друде – Лоренца.
- •2.12. Вывод законов Ома, Джоуля-Ленца и Видемана-Франца на основе теории Друде-Лоренца.
- •2.13. Затруднения классической теории электропроводности металлов. Сверхпроводимость металлов. Открытие высокотемпературной сверхпроводимости.
- •Магнитное поле.
- •Действие магнитного поля на токи и заряды.
- •Теорема Гаусса. Теорема Ампера о циркуляции.
- •Поток вектора магнитной индукции. Теорема Гаусса в магнитостатике.
- •3.11. Теорема о циркуляции магнитного поля. Магнитное напряжение.
- •3.12. Магнитное поле соленоида и тороида.
- •1) Магнитное поле на оси прямого длинного соленоида.
- •2) Магнитное поле на оси тороида.
- •Электродинамика.
- •Магнитное поле в веществе.
- •Элементы квантовой электронной теории проводимости. Термоэлектронная эмиссия и контактные явления.
- •Свободные колебания в контуре без активного сопротивления. Собственные и вынужденные электромагнитные колебания.
- •Колебательный контур. Собственные колебания в контуре.
- •9.2 Свободные затухающие колебания.
- •Вынужденные электрические колебания
- •Переменный ток.
- •Метод векторных диаграмм.
- •5.4. Резонансные явления в колебательном контуре. Резонанс напряжений и резонанс токов.
- •Взаимное превращение электрических и магнитных полей. Уравнения Максвелла.
- •Электромагнитные волны.
- •Электромагнитные волны.
Переменный ток.
(Переменный ток, текущий через резистор. Переменный ток, текущий через емкость. Реактивное емкостное сопротивление. Переменный ток, текущий через индуктивность. Реактивное индуктивное сопротивление. Цепь переменного тока с емкостью, индуктивностью и сопротивлением. Резонанс напряжений. Мощность, выделяемая в цепи переменного тока. Коэффициент мощности. Резонанс токов.)
Метод векторных диаграмм.
Если в цепь электрического контура, содержащего емкость, индуктивность и сопротивление, включить источник переменной ЭДС (рис.16.5), то в нем, наряду с собственными затухающими колебаниями, возникнут незатухающие вынужденные колебания. Частота этих колебаний совпадает с частотой изменения переменной ЭДС.
Рис.16.5. Последовательный колебательный RLC-контур.
Ч
тобы
получить уравнение вынужденных
колебаний, надо, согласно второму
правилу Кирхгофа, приравнять сумму
падений напряжений на элементах контура
приложенной ЭДС:
и
ли
где Е0 - амплитуда переменной ЭДС; ω – ее циклическая частота.
И нтересующее нас частное решение этого дифференциального уравнения имеет вид:
где
Решение соответствующего однородного уравнения, как мы видели в п.5.2, представляет собой свободные затухающие колебания, которые с течением времени становятся исчезающе малыми, и их можно в дальнейшем не учитывать.
Выпишем формулы для силы тока в цепи и падений напряжений на каждом из элементов контура.
Сила тока:
,
.
По аналогии с законом Ома для полной цепи по постоянному току величину
называют полным сопротивлением
цепи по переменному току. Эта
величина представляет собой модуль
комплексного сопротивления
,
называемого также импедансом цепи.
Сопротивление R
называют активным сопротивлением
(на нем выделяется тепло). Чисто
мнимые сопротивления ωL
и
называют соответственно индуктивным
и емкостным реактивными
сопротивлениями (на них тепло не
выделяется).
Напряжение на сопротивлении R:
,
.
Напряжение на конденсаторе С:
,
.
Напряжение на катушке индуктивности L:
,
.
Сравнивая написанные формулы, видим,
что изменение напряжения на сопротивлении
следует за изменением силы тока в цепи
без отставания или опережения по
фазе, изменение напряжение на конденсаторе
отстает по фазе на
,
а на индуктивности опережает по
фазе на
изменение тока. Наглядно это можно
изобразить с помощью векторной
диаграммы (рис.16.6), вещественная
ось которой (ось Х) совпадает с осью
токов. Длина каждого вектора на
этой диаграмме дает амплитуду
соответствующего напряжения, а угол,
который составляет данный вектор с осью
токов – сдвиг фазы по отношению к
изменению силы тока в цепи.
Рис.16.6. Векторная диаграмма для последовательного RLC-контура.
Амплитуда суммарного напряжения
на всех элементах контура, равная
амплитуде Е0 действующей
в контуре ЭДС, является результатом
векторного сложения символических
напряжений
и
.
Этот вектор образует с осью токов угол
,
показывающий разность фаз между
током и ЭДС. Тангенс этого угла равен:
.
