- •Часть I I
- •Часть I I. Электричество и магнетизм
- •Электрическое поле в вакууме Электрический заряд, атомистичность заряда, элементарный заряд
- •1.2 Закон сохранения заряда
- •1.3 Закон Кулона
- •1.4 Электростатическое поле
- •1.5 Принцип суперпозиции электростатических полей
- •1.6 Силовые линии электростатического поля
- •1.7 Эквипотенциальные поверхности
- •1.8 Связь между напряжённостью поля и потенциалом (градиент потенциала)
- •Потенциал электрического поля.
- •Работа, совершаемая при перемещении заряда в электростатическом поле. Теорема о циркуляции вектора напряжённости электростатического поля
- •1.10 Энергия заряда в электростатическом поле. Потенциал. Разность потенциалов
- •Поток вектора напряженности. Теорема Гаусса.
- •1.12 Применение теоремы Гаусса для расчета электростатических полей.
- •1.12.1 Поле равномерно заряженной бесконечно протяженной плоскости.
- •Поле плоского конденсатора.
- •1.12.3 Поле равномерно заряженной бесконечно длинной прямой нити.
- •1.12.4 Поле равномерно заряженной сферической поверхности радиуса r и заряда q.
- •1.12.5 Поле объемно-заряженного шара
- •Электрический диполь. Диэлектрики в электрическом поле. Сегнетоэлектрики.
- •Диполь в однородном и неоднородном электрических полях
- •3. Диэлектрики в электрическом поле.
- •3.1 Диэлектрики. Полярные и неполярные молекулы.
- •3.2 Характеристики, вводимые для описания электрического поля в присутствии диэлектриков
- •3.3 Неполярный диэлектрик во внешнем электрическом поле.
- •3.4 Полярный диэлектрик во внешнем электрическом поле.
- •3.5 Физический смысл теоремы Гаусса для векторов и .
- •Проводники в электрическом поле. Электроемкость.
- •Проводники в электрическом поле Распределение избыточного заряда на проводниках в состоянии равновесия.
- •4.2 Незаряженный проводник во внешнем электрическом поле.
- •4.3 Электроёмкость проводника
- •4.4 Конденсаторы. Электроёмкость конденсаторов.
- •Энергия электростатического поля.
- •Энергия электростатического поля Энергия системы зарядов.
- •5.2 Энергия заряженного проводника.
- •5.3 Энергия заряженного конденсатора
- •5.4 Энергия электростатического поля.
- •Законы постоянного тока.
- •Постоянный ток. Сила тока, плотность тока.
- •6.2 Закон Ома для однородного участка цепи. Сопротивление проводников. Понятие о сверхпроводимости.
- •6.3 Источники тока. Эдс источника тока. Напряжение. Закон Ома для неоднородного участка цепи.
- •6.4 Работа, мощность и тепловое действие постоянного тока.
- •6.5 Законы Ома и Джоуля-Ленца в дифференциальной форме.
- •6.6 Правила Кирхгофа.
- •Элементы классической теории проводимости.
- •Природа носителей тока в металлах.
- •2.11. Основные положения классической электронной теории проводимости металлов Друде – Лоренца.
- •2.12. Вывод законов Ома, Джоуля-Ленца и Видемана-Франца на основе теории Друде-Лоренца.
- •2.13. Затруднения классической теории электропроводности металлов. Сверхпроводимость металлов. Открытие высокотемпературной сверхпроводимости.
- •Магнитное поле.
- •Действие магнитного поля на токи и заряды.
- •Теорема Гаусса. Теорема Ампера о циркуляции.
- •Поток вектора магнитной индукции. Теорема Гаусса в магнитостатике.
- •3.11. Теорема о циркуляции магнитного поля. Магнитное напряжение.
- •3.12. Магнитное поле соленоида и тороида.
- •1) Магнитное поле на оси прямого длинного соленоида.
- •2) Магнитное поле на оси тороида.
- •Электродинамика.
- •Магнитное поле в веществе.
- •Элементы квантовой электронной теории проводимости. Термоэлектронная эмиссия и контактные явления.
- •Свободные колебания в контуре без активного сопротивления. Собственные и вынужденные электромагнитные колебания.
- •Колебательный контур. Собственные колебания в контуре.
- •9.2 Свободные затухающие колебания.
- •Вынужденные электрические колебания
- •Переменный ток.
- •Метод векторных диаграмм.
- •5.4. Резонансные явления в колебательном контуре. Резонанс напряжений и резонанс токов.
- •Взаимное превращение электрических и магнитных полей. Уравнения Максвелла.
- •Электромагнитные волны.
- •Электромагнитные волны.
6.2 Закон Ома для однородного участка цепи. Сопротивление проводников. Понятие о сверхпроводимости.
Однородным
участком электрической цепи
называют участок, на котором направленное
движение зарядов происходит под действием
только кулоновских сил. Для него Г. Ом
в 1826 году экспериментально установил
следующий закон: сила тока I,
текущего по однородному участку цепи,
прямо пропорциональна разности
потенциалов (
)
и обратно пропорциональна сопротивлению
R
этого участка цепи:
, (6.4)
где разность потенциалов между начальной и конечной точками участка.
Формула (6.4) позволяет установить единицу сопротивления – ом (Ом): 1 Ом – сопротивление такого проводника, в котором при напряжении 1 В течет постоянный ток 1 А.
Сопротивление однородного участка цепи R характеризует свойство проводника препятствовать протеканию по нему электрического тока:
Cсопротивление не зависит ни от , ни от I и связано с геометрическими размерами, формой проводника, материалом , из которого проводник изготовлен, и температурой.
На
практике обычно используют проводники
цилиндрического вида длиной
и площадью поперечного сечения S.
Для однородного линейного проводника
R
определяется:
, (6.5)
где - характеризует материал проводника и называется удельным электрическим сопротивлением. Единица удельного электрического сопротивления – ом-метр (Омּм). Численно равно сопротивлению R проводника при =1 м и S = 1 м2.
Для чистых металлических проводников при комнатной температуре удельное сопротивление практически линейно возрастает с повышением температуры t, а именно
, (6.6)
где
-
удельное сопротивление проводника при
температуре
.
Входящий
в формулу (6.6) параметр
называют температурным
коэффициентом сопротивления (ТКС),
он численно равен относительному
изменению удельного сопротивления
проводника
при повышении температуры проводника
на 10С:
Зависимость R(t) металлического проводника также соответствует формуле (6.4), так как размеры проводника ( , S) обычно изменяются с температурой значительно слабее, чем удельное сопротивление:
Рис. 6.2 Зависимость удельного сопротивления от температуры.
Для чистых металлов ТКС является положительной величиной, примерно равной 1/273 К-1. При низких температурах, когда колебания положительных ионов кристаллической решетки не оказывают существенного влияния на движение свободных электронов, удельное сопротивление не слишком изменяется с температурой (рис. 6.2, кривая 1)
Для многих металлов при определенной температуре Тс (ее называют температурой перехода в сверхпроводящее состояние, Тс ≤ 20 К) сопротивление металла R обращается в ноль (R = 0), металл при Т < Тс будет находиться в сверхпроводящем состоянии (рис. 6.2, кривая 2).
Отметим, что ТКС может уменьшаться с повышением температуры, что, например, наблюдается для растворов электролитов и для полупроводников и связано с увеличением в них концентрации свободных носителей заряда при повышении температуры.
Практическое использование сверхпроводящих материалов (в обмотках сверхпроводящих магнитов, в системах памяти ЭВМ и др.) затруднено из-за их низких критических температур. В настоящее время обнаружены и активно исследуются керамические материалы, обладающие сверхпроводимостью при температуре выше 100 К.
