- •Часть I I
- •Часть I I. Электричество и магнетизм
- •Электрическое поле в вакууме Электрический заряд, атомистичность заряда, элементарный заряд
- •1.2 Закон сохранения заряда
- •1.3 Закон Кулона
- •1.4 Электростатическое поле
- •1.5 Принцип суперпозиции электростатических полей
- •1.6 Силовые линии электростатического поля
- •1.7 Эквипотенциальные поверхности
- •1.8 Связь между напряжённостью поля и потенциалом (градиент потенциала)
- •Потенциал электрического поля.
- •Работа, совершаемая при перемещении заряда в электростатическом поле. Теорема о циркуляции вектора напряжённости электростатического поля
- •1.10 Энергия заряда в электростатическом поле. Потенциал. Разность потенциалов
- •Поток вектора напряженности. Теорема Гаусса.
- •1.12 Применение теоремы Гаусса для расчета электростатических полей.
- •1.12.1 Поле равномерно заряженной бесконечно протяженной плоскости.
- •Поле плоского конденсатора.
- •1.12.3 Поле равномерно заряженной бесконечно длинной прямой нити.
- •1.12.4 Поле равномерно заряженной сферической поверхности радиуса r и заряда q.
- •1.12.5 Поле объемно-заряженного шара
- •Электрический диполь. Диэлектрики в электрическом поле. Сегнетоэлектрики.
- •Диполь в однородном и неоднородном электрических полях
- •3. Диэлектрики в электрическом поле.
- •3.1 Диэлектрики. Полярные и неполярные молекулы.
- •3.2 Характеристики, вводимые для описания электрического поля в присутствии диэлектриков
- •3.3 Неполярный диэлектрик во внешнем электрическом поле.
- •3.4 Полярный диэлектрик во внешнем электрическом поле.
- •3.5 Физический смысл теоремы Гаусса для векторов и .
- •Проводники в электрическом поле. Электроемкость.
- •Проводники в электрическом поле Распределение избыточного заряда на проводниках в состоянии равновесия.
- •4.2 Незаряженный проводник во внешнем электрическом поле.
- •4.3 Электроёмкость проводника
- •4.4 Конденсаторы. Электроёмкость конденсаторов.
- •Энергия электростатического поля.
- •Энергия электростатического поля Энергия системы зарядов.
- •5.2 Энергия заряженного проводника.
- •5.3 Энергия заряженного конденсатора
- •5.4 Энергия электростатического поля.
- •Законы постоянного тока.
- •Постоянный ток. Сила тока, плотность тока.
- •6.2 Закон Ома для однородного участка цепи. Сопротивление проводников. Понятие о сверхпроводимости.
- •6.3 Источники тока. Эдс источника тока. Напряжение. Закон Ома для неоднородного участка цепи.
- •6.4 Работа, мощность и тепловое действие постоянного тока.
- •6.5 Законы Ома и Джоуля-Ленца в дифференциальной форме.
- •6.6 Правила Кирхгофа.
- •Элементы классической теории проводимости.
- •Природа носителей тока в металлах.
- •2.11. Основные положения классической электронной теории проводимости металлов Друде – Лоренца.
- •2.12. Вывод законов Ома, Джоуля-Ленца и Видемана-Франца на основе теории Друде-Лоренца.
- •2.13. Затруднения классической теории электропроводности металлов. Сверхпроводимость металлов. Открытие высокотемпературной сверхпроводимости.
- •Магнитное поле.
- •Действие магнитного поля на токи и заряды.
- •Теорема Гаусса. Теорема Ампера о циркуляции.
- •Поток вектора магнитной индукции. Теорема Гаусса в магнитостатике.
- •3.11. Теорема о циркуляции магнитного поля. Магнитное напряжение.
- •3.12. Магнитное поле соленоида и тороида.
- •1) Магнитное поле на оси прямого длинного соленоида.
- •2) Магнитное поле на оси тороида.
- •Электродинамика.
- •Магнитное поле в веществе.
- •Элементы квантовой электронной теории проводимости. Термоэлектронная эмиссия и контактные явления.
- •Свободные колебания в контуре без активного сопротивления. Собственные и вынужденные электромагнитные колебания.
- •Колебательный контур. Собственные колебания в контуре.
- •9.2 Свободные затухающие колебания.
- •Вынужденные электрические колебания
- •Переменный ток.
- •Метод векторных диаграмм.
- •5.4. Резонансные явления в колебательном контуре. Резонанс напряжений и резонанс токов.
- •Взаимное превращение электрических и магнитных полей. Уравнения Максвелла.
- •Электромагнитные волны.
- •Электромагнитные волны.
Проводники в электрическом поле. Электроемкость.
(Распределение зарядов на проводнике. Проводники во внешнем электростатическом поле. Принцип электростатической защиты. Емкость уединенного проводника. Конденсаторы и их классификация по геометрии обкладок и роду диэлектрика. Емкость конденсатора. Соединение конденсаторов.)
Проводники в электрическом поле Распределение избыточного заряда на проводниках в состоянии равновесия.
Проводники – это вещества, в которых есть свободные носители зарядов, способные перемещаться под действием внешнего электрического поля. В случае металлических проводников свободными носителями заряда являются валентные электроны, которые образуют газ, заполняющий кристаллическую решётку положительно заряженных ионов.
Если проводящему телу сообщить некоторый заряд , то он распределится так, чтобы соблюдались условия равновесия. В условиях равновесия избыточного заряда справедливы следующие утверждения:
Электрическое поле внутри проводника
отсутствует, а объём проводника, и его
поверхность является эквипотенциальными:
(4.1)
Действительно,
если равенства (4.1) не выполняются, то
тогда свободные заряды в проводнике
будут перемещаться, так как работа сил
электрического поля не будет равна нулю
(
).
Это противоречит условию равновесия
избыточного заряда: в условиях равновесия
они должны быть неподвижными.
Из-за кулоновского отталкивания одноимённых зарядов избыточные заряды стремятся разойтись на максимально большое расстояние между собой. Кроме того, согласно (4.1) и теореме Гаусса (1.21) сумма зарядов внутри проводника будет равна нулю. Следовательно, при равновесии ни в каком месте внутри проводника не может быть избыточных зарядов – все они распределятся по поверхности проводника.
Распределение избыточных зарядов на внешней поверхности проводника является неравномерным. Установим связь между поверхностной плотностью заряда σ и напряжённостью поля вблизи поверхности заряженного проводника. Для этого построим цилиндрическую поверхность площадью основания dS таким образом, что образующая цилиндра перпендикулярна поверхности проводника, а основания – одно вне, а другое внутри проводника (рис. 4.1)
П
З
по теореме Гаусса (1.21):
Рис.
4.1 К определению связи между
и
вблизи проводника
Из формулы (4.2) следует, что в точках, где больше там больше и напряжённость поля.
Из-за взаимного отталкивания избыточные заряды стремятся расположиться как можно дальше друг от друга, поэтому на выступах (остриях) проводника поверхностная плотность заряда проводника больше, чем в других местах. Следовательно, вблизи таких частей заряженного проводника напряжённость поля больше, а эквипотенциальные поверхности проходят гуще (рис. 4.2).
|
|
Рис. 4.2 Cиловые линии и эквипотенциальные поверхности заряженного проводника |
Рис. 4.3 Стекание зарядов с острия проводника |
Вблизи поверхности острия (рис. 4.3) модуль вектора может превысить значение, соответствующее ионизации воздуха (при нормальном атмосферном давлении Е’≈3*106 В/м), что приводит к возникновению стекания зарядов, сопровождающегося так называемым электрическим ветром.
Образующиеся
при ионизации молекул электроны движутся
к острию и компенсируют на нём часть
заряда, равновесие зарядов на проводнике
нарушается, и к острию подходят заряды
с других участков поверхности проводника
(рис. 4.3). Такое движение продолжается
до тех пор, пока модуль вектора
вблизи острия будет превышать
.
Положительно заряженные ионы и заряды
на поверхности проводника отталкиваются,
что может привести к движению проводника.
