
- •Часть I
- •Часть I. Механика. Молекулярная физика и термодинамика
- •1.1. Основные понятия кинематики
- •1.2. Скорость
- •1.3. Неравномерное движение. Ускорение
- •1.4. Кинематические уравнения
- •1.4.1. Равномерное прямолинейное движение
- •1.4.2. Равнопеременное движение
- •1.5. Кинематика вращательного движения
- •1.6. Связь между линейными и угловыми величинами
- •Динамика материальной точки.
- •Первый закон Ньютона. Инерциальные системы отсчета
- •2.2. Сила и масса. Второй и третий законы Ньютона
- •2.3. Закон сохранения импульса. Центр масс системы
- •2.4. Силы в механике
- •2.4.1. Закон всемирного тяготения. Сила тяжести
- •2.4.3. Силы упругости
- •Работа. Мощность. Механическая энергия
- •3.2. Консервативные и диссипативные силы
- •3.3. Кинетическая и потенциальная энергия
- •3.4. Закон сохранения энергии
- •3.5. Применение законов сохранения энергии и импульса к соударению абсолютно упругих и неупругих тел
- •2.4.2. Силы трения
- •Кинематика и динамика твердого тела
- •Момент инерции
- •4.2. Кинетическая энергия вращающегося твердого тела
- •4.3. Момент силы. Уравнение динамики вращательного движения твердого тела
- •4.4. Момент импульса и закон его сохранения
- •4.5. Свободные оси. Гироскопы
- •4.6. Сопоставление формул кинематики и динамики поступательного и вращательного движений
- •Элементы механики жидкостей.
- •Пространственно-временные соотношения и их следствия. Понятие о релятивистской механике.
- •Общие сведения о колебаниях. Одномерный классический гармонический осциллятор
- •Пружинный маятник (рис. 3)
- •Физический маятник (рис. 4)
- •Математический маятник (рис. 5)
- •Затухающие колебания.
- •Гармонический осциллятор при наличии сил сопротивления
- •Вынужденные колебания
- •Сложение колебаний.
- •Векторная диаграмма
- •Сложение взаимно перпендикулярных колебаний
- •Разность фаз . В этом случае уравнение (25) примет вид ,
- •Качественные методы теории колебаний
- •Автоколебания. Параметрический резонанс
- •Свободные электрические колебания в контуре без активного сопротивления
- •Затухающие электрические колебания
- •Волны в упругой среде.
- •Упругие волны
- •Уравнение бегущей волны
- •Принцип суперпозиции. Интерференция волн
- •1) Если колебания происходят в одинаковой фазе, т.Е. ( , (116)
- •Стоячие волны
- •Звуковые волны
- •Физические основы молекулярно-кинетической теории газов
- •1. Молекулярно-кинетическая теория идеальных газов
- •Основные положения молекулярно-кинетической теории
- •1.2. Масса и размеры молекул. Количество вещества
- •1.3. Законы идеального газа
- •1.4. Уравнение состояния идеального газа
- •1.5. Основное уравнение молекулярно-кинетической теории идеальных газов
- •Физические основы молекулярно-кинетической теории газов
- •Закон Максвелла о распределении молекул по скоростям
- •1.7. Распределение Больцмана
- •Явления переноса в термодинамически неравновесных системах.
- •Средняя длина свободного пробега молекул. Явления переноса
- •Физические основы термодинамики.
- •Внутренняя энергия системы. Степени свободы молекул
- •2.2. Первое начало термодинамики. Удельная и молярная теплоемкости
- •2.3. Работа газа по перемещению поршня. Теплоемкость при постоянном объеме и давлении
- •2.4. Применение первого начала термодинамики к изопроцессам. Адиабатный процесс. Политропный процесс
- •2.5. Круговой процесс. Обратимые и необратимые процессы
- •Кпд кругового процесса
- •2.6. Энтропия
- •Статистическое толкование энтропии
- •2.7. Второе и третье начала термодинамики
- •2.8. Тепловые двигатели и холодильные машины
- •Теорема Карно
- •Реальные газы
- •Уравнение Ван-дер-Ваальса
- •Внутренняя энергия реального газа
- •4. Свойства жидкостей
- •4.1 Особенности жидкого состояния вещества
- •4.2. Энергия поверхностного слоя и поверхностное натяжение жидкостей
- •4.3 Смачивание и несмачивание
- •4.4. Капиллярные явления
Качественные методы теории колебаний
(Качественные методы в теории колебаний. Метод фазового портрета. Фазовый портрет физического маятника в отсутствии и при наличии сил трения. Автоколебания. Общие принципы теории автоколебаний. Обратная связь. Фазовый портрет автоколебаний. Устойчивый предельный цикл.)
Автоколебания. Параметрический резонанс
Автоколебаниями называются незатухающие колебания, обусловленные управляемым самой системой пополнением энергии от источника неколебательной природы. Любая автоколебательная система состоит из четырёх частей: колебательной системы, источника энергии неколебательной природы, клапана, регулирующего поступление энергии в колебательную систему, определенными порциями, обратной связи или устройства управления работой клапана за счет процессов в самой колебательной системе.
Обратная связь называется положительной (отрицательной), если в течение времени воздействия источника энергии на колебательную систему источник энергии производит над системой положительную (отрицательную) работу и передает ей (отнимает от нее) некоторый запас энергии. Положительная обратная связь используется для возбуждения автоколебаний. В случае отрицательной обратной связи усиливается затухание, и автоколебания подавляются.
Автоколебательными системами являются, например, часы, паровые машины и двигатели внутреннего сгорания, отбойные молотки, электрические звонки. Автоколебания совершают струны под действием смычка в скрипке, воздушные столбы в трубах духовых инструментов, язычки в баянах и аккордеонах, голосовые связки при разговоре или пении. Электрической автоколебательной системой является генератор незатухающих электрических колебаний. В ряде случаев механизм обратной связи автоколебательной системы замаскирован, и разбиение системы на основные части затруднительно.
В качестве примера автоколебательной системы рассмотрим часовой механизм. Маятник часов насажен на одну ось с изогнутым рычагом – анкером. На концах анкера имеются выступы специальной формы, называемые палеттами. Зубчатое ходовое колесо находится под воздействием цепочки с гирей или закрученной пружины, которые стремятся повернуть его по часовой стрелке. Однако большую часть времени колесо опирается на один из зубьев в боковую поверхность той или иной палетты, скользящей при качании маятника по поверхности зуба. Только в момент, когда маятник находится вблизи среднего положения, палетты перестают преграждать путь зубьям, и ходовое колесо поворачивается, толкая анкер зубом, скользящим своей вершиной по скошенному торцу палетты. За полный цикл качания маятника (период) ходовое колесо проворачивается на два зуба, причем каждый из палетт получает по толчку. Посредством этих толчков за счет энергии поднятой гири или закрученной пружины и восполняется убыль энергии маятника, возникающая вследствие трения. Итак, в часах колебательной системой является маятник. Источником энергии – поднятая вверх гиря или заведенная пружина. Клапаном является анкер. Обратная связь осуществляется взаимодействием анкера с ходовым колесом.
Существует еще один вид взаимодействия извне, с помощью которого можно сильно раскачать систему. Этот вид взаимодействия заключается в совершаемом в такт с колебаниями периодическом изменении какого-либо параметра системы, вследствие чего само явление называется параметрическим резонансом.
В
озьмем
для примера простейший маятник – шарик
на нитке. Если периодически изменять
длину маятника, увеличивая её в моменты,
когда маятник находится в крайнем
положении, и, уменьшая в моменты, когда
маятник находится в среднем положении
(рис. 16), то маятник сильно раскачается.
Увеличение энергии маятника при этом
происходит за счет работы, которую
совершает сила, действующая на нить.
Сила натяжения нити при колебаниях
маятника непостоянна: она меньше в
крайних положениях, когда скорость
обращается в ноль, и больше в среднем
положении, когда скорость маятника
максимальна. Поэтому отрицательная
работа внешней силы при удалении маятника
оказывается меньше по величине, чем
положительная работа, совершаемая при
укорочении маятника. В итоге работа
внешних сил за период оказывается больше
нуля.