
- •Часть I
- •Часть I. Механика. Молекулярная физика и термодинамика
- •1.1. Основные понятия кинематики
- •1.2. Скорость
- •1.3. Неравномерное движение. Ускорение
- •1.4. Кинематические уравнения
- •1.4.1. Равномерное прямолинейное движение
- •1.4.2. Равнопеременное движение
- •1.5. Кинематика вращательного движения
- •1.6. Связь между линейными и угловыми величинами
- •Динамика материальной точки.
- •Первый закон Ньютона. Инерциальные системы отсчета
- •2.2. Сила и масса. Второй и третий законы Ньютона
- •2.3. Закон сохранения импульса. Центр масс системы
- •2.4. Силы в механике
- •2.4.1. Закон всемирного тяготения. Сила тяжести
- •2.4.3. Силы упругости
- •Работа. Мощность. Механическая энергия
- •3.2. Консервативные и диссипативные силы
- •3.3. Кинетическая и потенциальная энергия
- •3.4. Закон сохранения энергии
- •3.5. Применение законов сохранения энергии и импульса к соударению абсолютно упругих и неупругих тел
- •2.4.2. Силы трения
- •Кинематика и динамика твердого тела
- •Момент инерции
- •4.2. Кинетическая энергия вращающегося твердого тела
- •4.3. Момент силы. Уравнение динамики вращательного движения твердого тела
- •4.4. Момент импульса и закон его сохранения
- •4.5. Свободные оси. Гироскопы
- •4.6. Сопоставление формул кинематики и динамики поступательного и вращательного движений
- •Элементы механики жидкостей.
- •Пространственно-временные соотношения и их следствия. Понятие о релятивистской механике.
- •Общие сведения о колебаниях. Одномерный классический гармонический осциллятор
- •Пружинный маятник (рис. 3)
- •Физический маятник (рис. 4)
- •Математический маятник (рис. 5)
- •Затухающие колебания.
- •Гармонический осциллятор при наличии сил сопротивления
- •Вынужденные колебания
- •Сложение колебаний.
- •Векторная диаграмма
- •Сложение взаимно перпендикулярных колебаний
- •Разность фаз . В этом случае уравнение (25) примет вид ,
- •Качественные методы теории колебаний
- •Автоколебания. Параметрический резонанс
- •Свободные электрические колебания в контуре без активного сопротивления
- •Затухающие электрические колебания
- •Волны в упругой среде.
- •Упругие волны
- •Уравнение бегущей волны
- •Принцип суперпозиции. Интерференция волн
- •1) Если колебания происходят в одинаковой фазе, т.Е. ( , (116)
- •Стоячие волны
- •Звуковые волны
- •Физические основы молекулярно-кинетической теории газов
- •1. Молекулярно-кинетическая теория идеальных газов
- •Основные положения молекулярно-кинетической теории
- •1.2. Масса и размеры молекул. Количество вещества
- •1.3. Законы идеального газа
- •1.4. Уравнение состояния идеального газа
- •1.5. Основное уравнение молекулярно-кинетической теории идеальных газов
- •Физические основы молекулярно-кинетической теории газов
- •Закон Максвелла о распределении молекул по скоростям
- •1.7. Распределение Больцмана
- •Явления переноса в термодинамически неравновесных системах.
- •Средняя длина свободного пробега молекул. Явления переноса
- •Физические основы термодинамики.
- •Внутренняя энергия системы. Степени свободы молекул
- •2.2. Первое начало термодинамики. Удельная и молярная теплоемкости
- •2.3. Работа газа по перемещению поршня. Теплоемкость при постоянном объеме и давлении
- •2.4. Применение первого начала термодинамики к изопроцессам. Адиабатный процесс. Политропный процесс
- •2.5. Круговой процесс. Обратимые и необратимые процессы
- •Кпд кругового процесса
- •2.6. Энтропия
- •Статистическое толкование энтропии
- •2.7. Второе и третье начала термодинамики
- •2.8. Тепловые двигатели и холодильные машины
- •Теорема Карно
- •Реальные газы
- •Уравнение Ван-дер-Ваальса
- •Внутренняя энергия реального газа
- •4. Свойства жидкостей
- •4.1 Особенности жидкого состояния вещества
- •4.2. Энергия поверхностного слоя и поверхностное натяжение жидкостей
- •4.3 Смачивание и несмачивание
- •4.4. Капиллярные явления
Сложение взаимно перпендикулярных колебаний
Допустим,
что материальная точка (тело) может
совершать колебания как вдоль оси
,
так и вдоль перпендикулярной оси
.
Если возбудить оба колебания, материальная
точка будет двигаться по некоторой
криволинейной траектории, форма которой
зависит от разности фаз колебаний.
Выберем начало отсчета времени так,
чтобы начальная фаза одного колебания
была равна нулю. Тогда уравнения запишутся
следующим образом:
,
(22)
где - разность фаз складываемых колебаний, и — амплитуды колебаний.
Выражения (22) представляют собой заданное в параметрической форме уравнение траектории, по которой движется тело, участвующее в обоих колебаниях. Чтобы получить уравнение траектории в обычном виде, нужно исключить из уравнений (22) параметр . Из первого уравнения следует, что
,
(23)
следовательно,
(24).
Теперь
развернем косинус во втором уравнении
из (22) по формуле для косинуса суммы (
и
подставим в него вместо
и
их
значения (23) и (24). В результате получим:
.
Перенесем все члены без корня в левую часть уравнения и возведем его в квадрат. После несложных преобразований получим уравнение эллипса, оси которого повернуты относительно координатных осей:
(25)
Ориентация эллипса и величина полуосей зависят довольно сложным образом от амплитуд и и разности фаз .
Рассмотрим некоторые частные случаи.
Разность фаз
.
В
этом случае уравнение (25) примет вид
,
откуда получается уравнение
прямой:
(26).
Результирующее
движение является гармоническим с
частотой
и
амплитудой
(рис
8).
Разность фаз . В этом случае уравнение (25) примет вид ,
о
ткуда
получается, что результирующее движение
представляет собой гармоническое
колебание вдоль прямой
(рис.9):
.
(27)
Разность фаз
.
Уравнение (25) переходит в уравнение эллипса, приведенного к координатным осям, причем полуоси эллипса равны соответствующим амплитудам колебаний (рис.10):
.
(28)
П
ри
равенстве амплитуд
и
эллипс вырождается в окружность. Случаи
и
отличаются
направлением движения по эллипсу или
по окружности.
Если
,
уравнения (22) можно записать следующим
образом:
.
В
момент
тело находится в точке
(рис 10). В последующие моменты времени,
координата
уменьшается, а координата
становится отрицательной. Следовательно,
движение совершается по часовой стрелке.
Если , уравнения колебаний имеют вид:
.
Отсюда можно заключить, что движение происходит против часовой стрелки.
Из
сказанного следует, что равномерное
движение по окружности радиусом
с угловой скоростью
может быть представлено как сумма двух
взаимно перпендикулярных колебаний:
.
(29)
(знак «+» в выражении для соответствует движению против часовой стрелки, знак «-» – по часовой стрелке).
В случае, когда частоты взаимно перпендикулярных колебаний отличаются на очень малую величину , их можно рассматривать как колебания одинаковой частоты, но с медленно изменяющейся разностью фаз. В самом деле, уравнения колебаний можно представить следующим образом:
г
де
выражение
рассматривается как разность фаз,
медленно изменяющуюся со временем по
линейному закону.
Результирующее
движение в этом случае происходит по
медленно видоизменяющейся кривой,
которая будет последовательно принимать
форму, отвечающую всем значениям разности
фаз от
до
.
Если частоты взаимно перпендикулярных колебаний неодинаковы, то траектория результирующего движения имеет вид довольно сложных кривых, называемых фигурами Лиссажу.
На рис.11 показана одна из простейших траекторий, получающаяся при отношении частот 1:2 и разности фаз . Чем ближе к единице рациональная дробь, выражающая отношение частот колебаний, тем сложнее оказывается фигура Лиссажу.
Фигуры Лиссажу позволяют найти частоту одного из колебаний, если известна частота другого. Это обусловлено тем, что кратность частот легко находится с помощью секущих, параллельных координатным осям.
Лекция 11 (2 часа)