
- •Часть I
- •Часть I. Механика. Молекулярная физика и термодинамика
- •1.1. Основные понятия кинематики
- •1.2. Скорость
- •1.3. Неравномерное движение. Ускорение
- •1.4. Кинематические уравнения
- •1.4.1. Равномерное прямолинейное движение
- •1.4.2. Равнопеременное движение
- •1.5. Кинематика вращательного движения
- •1.6. Связь между линейными и угловыми величинами
- •Динамика материальной точки.
- •Первый закон Ньютона. Инерциальные системы отсчета
- •2.2. Сила и масса. Второй и третий законы Ньютона
- •2.3. Закон сохранения импульса. Центр масс системы
- •2.4. Силы в механике
- •2.4.1. Закон всемирного тяготения. Сила тяжести
- •2.4.3. Силы упругости
- •Работа. Мощность. Механическая энергия
- •3.2. Консервативные и диссипативные силы
- •3.3. Кинетическая и потенциальная энергия
- •3.4. Закон сохранения энергии
- •3.5. Применение законов сохранения энергии и импульса к соударению абсолютно упругих и неупругих тел
- •2.4.2. Силы трения
- •Кинематика и динамика твердого тела
- •Момент инерции
- •4.2. Кинетическая энергия вращающегося твердого тела
- •4.3. Момент силы. Уравнение динамики вращательного движения твердого тела
- •4.4. Момент импульса и закон его сохранения
- •4.5. Свободные оси. Гироскопы
- •4.6. Сопоставление формул кинематики и динамики поступательного и вращательного движений
- •Элементы механики жидкостей.
- •Пространственно-временные соотношения и их следствия. Понятие о релятивистской механике.
- •Общие сведения о колебаниях. Одномерный классический гармонический осциллятор
- •Пружинный маятник (рис. 3)
- •Физический маятник (рис. 4)
- •Математический маятник (рис. 5)
- •Затухающие колебания.
- •Гармонический осциллятор при наличии сил сопротивления
- •Вынужденные колебания
- •Сложение колебаний.
- •Векторная диаграмма
- •Сложение взаимно перпендикулярных колебаний
- •Разность фаз . В этом случае уравнение (25) примет вид ,
- •Качественные методы теории колебаний
- •Автоколебания. Параметрический резонанс
- •Свободные электрические колебания в контуре без активного сопротивления
- •Затухающие электрические колебания
- •Волны в упругой среде.
- •Упругие волны
- •Уравнение бегущей волны
- •Принцип суперпозиции. Интерференция волн
- •1) Если колебания происходят в одинаковой фазе, т.Е. ( , (116)
- •Стоячие волны
- •Звуковые волны
- •Физические основы молекулярно-кинетической теории газов
- •1. Молекулярно-кинетическая теория идеальных газов
- •Основные положения молекулярно-кинетической теории
- •1.2. Масса и размеры молекул. Количество вещества
- •1.3. Законы идеального газа
- •1.4. Уравнение состояния идеального газа
- •1.5. Основное уравнение молекулярно-кинетической теории идеальных газов
- •Физические основы молекулярно-кинетической теории газов
- •Закон Максвелла о распределении молекул по скоростям
- •1.7. Распределение Больцмана
- •Явления переноса в термодинамически неравновесных системах.
- •Средняя длина свободного пробега молекул. Явления переноса
- •Физические основы термодинамики.
- •Внутренняя энергия системы. Степени свободы молекул
- •2.2. Первое начало термодинамики. Удельная и молярная теплоемкости
- •2.3. Работа газа по перемещению поршня. Теплоемкость при постоянном объеме и давлении
- •2.4. Применение первого начала термодинамики к изопроцессам. Адиабатный процесс. Политропный процесс
- •2.5. Круговой процесс. Обратимые и необратимые процессы
- •Кпд кругового процесса
- •2.6. Энтропия
- •Статистическое толкование энтропии
- •2.7. Второе и третье начала термодинамики
- •2.8. Тепловые двигатели и холодильные машины
- •Теорема Карно
- •Реальные газы
- •Уравнение Ван-дер-Ваальса
- •Внутренняя энергия реального газа
- •4. Свойства жидкостей
- •4.1 Особенности жидкого состояния вещества
- •4.2. Энергия поверхностного слоя и поверхностное натяжение жидкостей
- •4.3 Смачивание и несмачивание
- •4.4. Капиллярные явления
Общие сведения о колебаниях. Одномерный классический гармонический осциллятор
Колебаниями называются процессы, отличающиеся той или иной степенью повторяемости. В зависимости от физической природы повторяющегося процесса различают колебания: механические, электромагнитные, электромеханические и т.д. Рассмотрим механические колебания.
В зависимости от характера воздействия на колеблющуюся систему различают свободные (или собственные) колебания, вынужденные колебания, автоколебания и параметрические колебания.
Силу, под действием которой происходит колебательный процесс, называют возвращающей силой, так как она стремится вернуть тело или материальную точку в положение равновесия.
Свободные колебания совершаются системой, выведенной из положения равновесия.
Собственными называются свободные колебания без учёта сил сопротивления (без затухания).
Вынужденными называются такие колебания, в процессе которых колеблющаяся система подвергается воздействию внешней периодически изменяющейся силы. Примером служат колебания моста, возникающие при прохождении по нему людей, шагающих в ногу.
Автоколебания, как и вынужденные колебания, сопровождаются воздействием на колеблющуюся систему внешних сил, однако моменты времени, когда осуществляются эти воздействия, задаются самой колеблющейся системой – система сама управляет внешним воздействием. Примером автоколебательной системы являются часы, в которых маятник получает толчки за счёт энергии поднятой гири или закрученной пружины, причем эти толчки происходят в моменты прохождения маятника через среднее положение.
При параметрических колебаниях за счёт внешнего воздействия происходит периодическое изменение какого-либо параметра системы, например, длины нити, к которой подвешен шарик, совершающий колебания.
Простейшими
являются гармонические
колебания,
при которых колеблющаяся величина
(например, отклонение маятника) изменяется
со временем по закону синуса или косинуса.
Этот вид колебаний особенно важен по
следующим причинам: во-первых, колебания
в природе и в технике часто имеют
характер, очень близкий к гармоническому,
во-вторых, периодические процессы иной
формы (с другой зависимостью от времени)
могут быть представлены как наложение
нескольких гармонических колебаний.
Гармонические колебания удобно
представить в виде круговой диаграммы
(рис.1). Пусть точка
движется по окружности радиусом
.
Её положение задаётся радиус-вектором
.
Положение равновесия задаётся точкой
.
Радиус-вектор
равномерно вращается с угловой скоростью
.
Проекции радиус-вектора
на оси
или
задаются математическими выражениями
(уравнениями) гармонических колебаний:
(1)
(2)
М
ы
будем использовать уравнение гармонических
колебаний в виде (1). Координата
задаёт значение колеблющейся величины.
Величина
– амплитуда
колебаний,
т.е. максимальное отклонение колеблющейся
точки от положения равновесия. Величина
,
равная числу колебаний за время
секунды, называется циклической
частотой.
Аргумент косинуса
,
характеризующий значение колеблющейся
величины в момент времени
,
называется фазой
колебаний.
Фаза колебаний
,
соответствующая начальному моменту
времени, называется начальной
фазой
колебаний. Время одного полного колебания
называется периодом
колебаний.
Число колебаний
за время, равное одной секунде, называется
частотой
колебаний.
.
Скорость колеблющейся точки находится дифференцированием выражения (1) по времени:
(3)
Дифференцируя вторично, получаем ускорение:
.
(4)
.
На
рис. 2 представлены зависимости
.
Скорость опережает смещение на
,
ускорение находится в противофазе по
отношению к смещению.
Каждое
конкретное колебание характеризуется
определенным значением амплитуды
и начальной фазы
.
Определим их значения из начальных
условий
.
В этом случае
,
.
Отсюда следует, что
,
.
Выведем дифференциальное уравнение гармонических колебаний. Из выражения (4) следует, что
или
. (5)
Уравнение (5) является дифференциальным уравнением гармонических колебаний. Это уравнение является общим уравнением, описывающим гармонические колебания. Его решением являются функции (1) или (2). Следовательно, можно сказать, что гармоническими называются колебания, совершаемые по закону синуса или косинуса.
Колебательные системы, описываемые уравнением (5) называются одномерным классическим гармоническим осциллятором. Модель одномерного классического гармонического осциллятора оказывается справедливой не только для механических, но и других видов собственных незатухающих колебаний. В различных разделах физики используется единый математический язык описания гармонических колебаний.
Рассмотрим конкретные примеры гармонических осцилляторов в механике.