
- •Техническая термодинамика
- •Введение
- •1. Основные понятия
- •1.1. Термодинамическая система, параметры состояния, уравнение состояния
- •1.2. Термодинамический процесс
- •1.3. Смеси газов, теплоемкость газов и газовых смесей
- •2. Первый закон термодинамики
- •2.1. Внутренняя энергия, работа изменения объема, теплота
- •2.2. Аналитическое выражение первого закона термодинамики
- •2.3. Энтальпия. Уравнение первого закона термодинамики через изменение энтальпии. Техническая работа
- •2.4. Уравнение первого закона термодинамики для потока газа
- •3. Второй закон термодинамики
- •3.1. Содержание и формулировки второго закона термодинамики. Круговые процессы или циклы. Цикл Карно
- •3.2. Энтропия. Аналитическое выражение второго закона термодинамики. Физический смысл энтропии. Тепловая диаграмма т, s
- •4. Термодинамические процессы идеального газа
- •4.1. Метод исследования процессов
- •4.2. Изохорный, изобарный, изотермический процессы
- •4.3. Адиабатный процесс
- •4.4. Политропный процесс
- •5. Равновесие термодинамических систем Термодинамические потенциалы.
- •6. Дифференциальные уравнения термодинамики
- •7. Реальные газы
- •8. Водяной пар
- •8.1. Основные понятия и определения
- •8.2. Процесс парообразования при постоянном давлении Диаграмма p, для пара. Расчет параметров
- •8.3. Таблицы водяного пара t, s и h, s-диаграммы для пара
- •8.4. Термодинамические процессы для пара Уравнение Клапейрона - Клаузиуса
- •9. Влажный воздух
- •10. Истечение и дросселирование газов и паров
- •10.1 Истечение газов. Основные понятия и математическое описание Адиабатное истечение из суживающегося сопла. Сопло Лаваля
- •10.2 Истечение пара. Истечение с учетом трения
- •10.3. Дросселирование газов и паров
- •11. Сжатие газов. Компрессоры.
- •11.1. Одноступенчатый компрессор объемного действия
- •11.2. Многоступенчатый компрессор
- •12. Циклы паросиловых установок
- •12.1. Цикл Карно для насыщенного пара
- •12.2. Цикл Ренкина
- •12.3. Цикл с промежуточным перегревом пара
- •12.4. Регенеративный цикл паросиловой установки
- •12.5. Теплофикационный цикл
- •13. Циклы поршневых двигателей внутреннего сгорания
- •13.1. Цикл двс с изохорным подводом теплоты
- •13.2 Цикл двс с изобарным подводом теплоты
- •13.3 Цикл двс со смешанным подводом теплоты
- •14. Циклы газотурбинных установок
- •14.1 Цикл гту с изобарным подводом теплоты
- •14.2 Цикл гту с изобарным подводом теплоты и регенерацией
- •14.3 Цикл гту с изохорным подводом теплоты
- •15. Циклы парогазовых установок
- •Библиографический список
14.1 Цикл гту с изобарным подводом теплоты
Схема простейшей ГТУ со сгоранием топлива при постоянном давлении изображена на рис. 14.1. Компрессор 2, приводимый в движение газовой турбиной 1, подает сжатый воздух в камеру сгорания 6, в которую через форсунку 7 впрыскивается жидкое топливо, подаваемое насосом 3, находящимся на валу турбины, из топливного бака 4. Продукты сгорания расширяются в сопловом аппарате газовой турбины и частично на лопатках ротора турбины и выбрасываются в атмосферу. Мощность, развиваемая турбиной, частично расходуется на привод компрессора и топливного насоса, а остальная часть потребляется электрогенератором 8 (или другим потребителем). Пуск установки осуществляется пусковым эл.двигателем 5.
Рис. 14.1
Цикл состоит из следующих процессов: 1-2 - адиабатное сжатие воздуха в компрессоре; 2-3 - изобарный подвод теплоты q1 в камере сгорания; 3-4 - адиабатное расширение рабочего тела в газовой турбине; 4-1 - изобарный отвод теплоты.
Работа, совершаемая в турбине 1 кг газа lт при адиабатном расширении, будет равна разности энтальпий газа перед турбиной и после нее: lт = h3 - h4. Эта работа за вычетом работы, затрачиваемой на привод компрессора lк = h2 - h1, воспринимается потребителем и составляет работу цикла.
lц = lт - lк = (h3 - h4) - (h2 - h1).
С другой стороны, работу цикла можно найти как разность подведенного и отведенного тепла.
lц = q1 - q2 = (h3 - h2) - (h4 - h1).
При обоих подходах получаем один и тот же результат.
Найдем термический к.п.д. цикла: t = 1 - q2/q1.
Подведенное и отведенное тепло будет q1 = cp(T3 - T2) и q2 = cp(T4 - T1). Тогда t = 1 - cp(T4 - T1)/cp(T3 - T2).
Параметрами цикла будут:
- степень повышения давления при
адиабатном сжатии в компрессоре;
- степень предварительного расширения.
Определим температуры газа в точках 2,3 и 4 через заданную температуру в точке 1.
Из адиабаты 1-2
,
откуда
.
Из изобары 2-3
,
откуда
.
Из адиабаты 3-4
,
откуда
.
Тогда
.
(14.1)
Следовательно, t цикла ГТУ с подводом теплоты при p = const является прямой функцией степени повышения давления . Однако повышение приводит к увеличению температуры газов перед рабочими лопатками турбины. Величина этой температуры лимитируется жаропрочностью сплавов, из которых изготовлены лопатки. В настоящее время максимально допустимая температура газов перед турбиной составляет 800 - 1000 оС.
14.2 Цикл гту с изобарным подводом теплоты и регенерацией
Для повышения термического к.п.д. применяются различные методы. Одним из них является регенерация. Т.к. газ, прошедший через рабочие органы турбины и выбрасываемый в атмосферу, имеет более высокую температуру, чем воздух, поступающий в камеру сгорания после сжатия в компрессоре, то это дает возможность усовершенствовать работу установки путем использования теплоты уходящих газов для предварительного подогрева воздуха перед подачей его в камеру сгорания. Этот предварительный нагрев рабочего тела путем отнятия тепла от тела, уже совершившего цикл, называется регенерацией.
В этом случае средняя температура подвода тепла будет больше, а средняя температура отвода тепла будет меньше, чем в цикле без регенерации, поэтому tp > t.
Представим схему ГТУ со сгоранием при p = const и регенерацией (рис.14.3) и цикл ГТУ с регенерацией теплоты в координатах T, s (рис. 14.4). Схема установки (рис.14.3) отличается от схемы, приведенной в п.14.1 (рис.14.1), лишь тем, что в ней дополнительно введен регенератор (теплообменник), в котором отработавшие в турбине газы отдают теплоту воздуху, сжатому в компрессоре и идущему в камеру сгорания.
Рис. 14.3
При полной (идеальной) регенерации температура воздуха после регенератора Т5 = Т4 - температуре газов после турбины, а температура газов после регенератора Т6 = Т2 - температуре воздуха на входе в регенератор. В действительных установках вследствие ограниченных размеров теплообменников должна существовать конечная разность температур между нагреваемым воздухом и охлаждаемыми газами. Поэтому нагреваемый воздух будет иметь температуру Т5, меньшую Т5 горячих газов, а охлаждаемые газы Т6 - более высокую, чем Т6.
.
Чем больше будет значение , тем полнее в цикле осуществляется регенерация и тем в большей степени используется теплота отработавших газов.
При = 0 установка работает без регенерации, при = 1 - с полной (идеальной) регенерацией.
На практике = 0,5 - 0,7.
Найдем термический к.п.д. регенеративного цикла tp. Для этого вначале определим q1 и q2
q1 = cp(T3 - T5) = cp(T3 - T2) - cp(T5 - T2).
Так как Т5 - Т2 = (Т5 - Т2) = (Т4 - Т2), то получим
q1 = cp[ (T3 - T2) - (T4 - T2) ].
q2 = cp(T6 - T1) = cp(T4 - T1) - cp(T4 - T6).
По смыслу тепло ср (Т4 - Т2), воспринимаемое воздухом от газов, должно быть равно теплу ср(Т4 - Т6), отдаваемому газами воздуху, т.е.
cp(T4 - T6) = ср (Т4 - Т2),
тогда q2 = cp[ (T4 - T1) - (T4 - T2) ].
Подставим сюда значения температур Т2;
Т3 и Т4, найденные в п.14.2:
;
;
.
Получим
.
Окончательно получим
.
(14.2)
Анализ формулы (14.2) показывает, что tp увеличивается с ростом и .
При = 0 формула
(14.2) принимает вид
,
т.е. получим t
без регенерации.
При = 1 получим
.