
- •Техническая термодинамика
- •Введение
- •1. Основные понятия
- •1.1. Термодинамическая система, параметры состояния, уравнение состояния
- •1.2. Термодинамический процесс
- •1.3. Смеси газов, теплоемкость газов и газовых смесей
- •2. Первый закон термодинамики
- •2.1. Внутренняя энергия, работа изменения объема, теплота
- •2.2. Аналитическое выражение первого закона термодинамики
- •2.3. Энтальпия. Уравнение первого закона термодинамики через изменение энтальпии. Техническая работа
- •2.4. Уравнение первого закона термодинамики для потока газа
- •3. Второй закон термодинамики
- •3.1. Содержание и формулировки второго закона термодинамики. Круговые процессы или циклы. Цикл Карно
- •3.2. Энтропия. Аналитическое выражение второго закона термодинамики. Физический смысл энтропии. Тепловая диаграмма т, s
- •4. Термодинамические процессы идеального газа
- •4.1. Метод исследования процессов
- •4.2. Изохорный, изобарный, изотермический процессы
- •4.3. Адиабатный процесс
- •4.4. Политропный процесс
- •5. Равновесие термодинамических систем Термодинамические потенциалы.
- •6. Дифференциальные уравнения термодинамики
- •7. Реальные газы
- •8. Водяной пар
- •8.1. Основные понятия и определения
- •8.2. Процесс парообразования при постоянном давлении Диаграмма p, для пара. Расчет параметров
- •8.3. Таблицы водяного пара t, s и h, s-диаграммы для пара
- •8.4. Термодинамические процессы для пара Уравнение Клапейрона - Клаузиуса
- •9. Влажный воздух
- •10. Истечение и дросселирование газов и паров
- •10.1 Истечение газов. Основные понятия и математическое описание Адиабатное истечение из суживающегося сопла. Сопло Лаваля
- •10.2 Истечение пара. Истечение с учетом трения
- •10.3. Дросселирование газов и паров
- •11. Сжатие газов. Компрессоры.
- •11.1. Одноступенчатый компрессор объемного действия
- •11.2. Многоступенчатый компрессор
- •12. Циклы паросиловых установок
- •12.1. Цикл Карно для насыщенного пара
- •12.2. Цикл Ренкина
- •12.3. Цикл с промежуточным перегревом пара
- •12.4. Регенеративный цикл паросиловой установки
- •12.5. Теплофикационный цикл
- •13. Циклы поршневых двигателей внутреннего сгорания
- •13.1. Цикл двс с изохорным подводом теплоты
- •13.2 Цикл двс с изобарным подводом теплоты
- •13.3 Цикл двс со смешанным подводом теплоты
- •14. Циклы газотурбинных установок
- •14.1 Цикл гту с изобарным подводом теплоты
- •14.2 Цикл гту с изобарным подводом теплоты и регенерацией
- •14.3 Цикл гту с изохорным подводом теплоты
- •15. Циклы парогазовых установок
- •Библиографический список
13. Циклы поршневых двигателей внутреннего сгорания
Тепловые двигатели, работа которых осуществляется за счет энергии топлива, сжигаемого в цилиндре самого двигателя, называются поршневыми двигателями внутреннего сгорания (ДВС). В реальных ДВС превращение теплоты в работу связано с целым комплексом сложных физико-химических, газодинамических и термодинамических процессов, учет которых делает изучение циклов достаточно сложным. Такие циклы ДВС называют действительными. ДВС подразделяют на двигатели с принудительным воспламенением горючей смеси, работающие с подводом теплоты при постоянном объеме, и двигатели с самовоспламенением, работающие с подводом теплоты при постоянном давлении или со смешанным подводом тепла.
При термодинамическом исследовании циклов ДВС полагают: 1) циклы замкнуты. В действительности же продукты сгорания удаляются в атмосферу, а на их место поступает новая порция рабочего тела; 2) рабочее тело в цикле рассматривается как идеальный газ с постоянной теплоемкостью; 3) процесс сгорания заменяется обратимым процессом подвода теплоты q1 извне; 4) процесс уноса теплоты, содержащейся в продуктах сгорания, заменяется обратимым отводом теплоты q2; 5) потери на трение и потери теплоты в окружающую среду отсутствуют.
При таких предпосылках можно считать, что ДВС работают по обратимым термодинамическим циклам.
Циклы ДВС можно свести к трем основным видам:
1) цикл с подводом теплоты при постоянном объеме (цикл Отто);
2) цикл с подводом теплоты при постоянном давлении (цикл Дизеля);
3) цикл со смешанным подводом теплоты вначале при постоянном объеме, а затем при постоянном давлении (цикл Тринклера).
Во всех этих циклах отвод теплоты происходит при постоянном объеме, а сжатие и расширение считаются адиабатными. Рассмотрим эти циклы.