
- •Техническая термодинамика
- •Введение
- •1. Основные понятия
- •1.1. Термодинамическая система, параметры состояния, уравнение состояния
- •1.2. Термодинамический процесс
- •1.3. Смеси газов, теплоемкость газов и газовых смесей
- •2. Первый закон термодинамики
- •2.1. Внутренняя энергия, работа изменения объема, теплота
- •2.2. Аналитическое выражение первого закона термодинамики
- •2.3. Энтальпия. Уравнение первого закона термодинамики через изменение энтальпии. Техническая работа
- •2.4. Уравнение первого закона термодинамики для потока газа
- •3. Второй закон термодинамики
- •3.1. Содержание и формулировки второго закона термодинамики. Круговые процессы или циклы. Цикл Карно
- •3.2. Энтропия. Аналитическое выражение второго закона термодинамики. Физический смысл энтропии. Тепловая диаграмма т, s
- •4. Термодинамические процессы идеального газа
- •4.1. Метод исследования процессов
- •4.2. Изохорный, изобарный, изотермический процессы
- •4.3. Адиабатный процесс
- •4.4. Политропный процесс
- •5. Равновесие термодинамических систем Термодинамические потенциалы.
- •6. Дифференциальные уравнения термодинамики
- •7. Реальные газы
- •8. Водяной пар
- •8.1. Основные понятия и определения
- •8.2. Процесс парообразования при постоянном давлении Диаграмма p, для пара. Расчет параметров
- •8.3. Таблицы водяного пара t, s и h, s-диаграммы для пара
- •8.4. Термодинамические процессы для пара Уравнение Клапейрона - Клаузиуса
- •9. Влажный воздух
- •10. Истечение и дросселирование газов и паров
- •10.1 Истечение газов. Основные понятия и математическое описание Адиабатное истечение из суживающегося сопла. Сопло Лаваля
- •10.2 Истечение пара. Истечение с учетом трения
- •10.3. Дросселирование газов и паров
- •11. Сжатие газов. Компрессоры.
- •11.1. Одноступенчатый компрессор объемного действия
- •11.2. Многоступенчатый компрессор
- •12. Циклы паросиловых установок
- •12.1. Цикл Карно для насыщенного пара
- •12.2. Цикл Ренкина
- •12.3. Цикл с промежуточным перегревом пара
- •12.4. Регенеративный цикл паросиловой установки
- •12.5. Теплофикационный цикл
- •13. Циклы поршневых двигателей внутреннего сгорания
- •13.1. Цикл двс с изохорным подводом теплоты
- •13.2 Цикл двс с изобарным подводом теплоты
- •13.3 Цикл двс со смешанным подводом теплоты
- •14. Циклы газотурбинных установок
- •14.1 Цикл гту с изобарным подводом теплоты
- •14.2 Цикл гту с изобарным подводом теплоты и регенерацией
- •14.3 Цикл гту с изохорным подводом теплоты
- •15. Циклы парогазовых установок
- •Библиографический список
12.2. Цикл Ренкина
Работа на сжатие рабочего тела может быть значительно уменьшена, если осуществить полную конденсацию пара, отработанного в турбине. В этом случае будет происходить сжатие воды (конденсата), а не влажного пара, как в цикле Карно. Для перемещения конденсата из конденсатора в котел с одновременным повышением давления от р2 до р1 применяются не компрессоры (как в цикле Карно), а насосы, компактные и простые по устройству, потребляющие мало энергии для своего привода. Впервые такой цикл с полной конденсацией пара предложил У. Дж. Ренкин.
Влажный пар, получаемый в котле, направляется в пароперегреватель, где подсушивается и перегревается. Перегретый пар направляется в турбину, где, расширяясь адиабатно, совершает работу, которая в электрогенераторе преобразуется в электрическую энергию. Из турбины отработанный пар направляется в конденсатор (представляющий из себя теплообменник), где отдает тепло охлаждающей воде и полностью конденсируется. Полученный конденсат засасывается из конденсатора, сжимается питательным насосом и направляется вновь в котел для повторного парообразования.
В конденсаторе вследствие резкого уменьшения удельного объема пара при его конденсации создается высокий вакуум (абсолютное давление в конденсаторах современных паровых турбин равно 0,04 - 0,06 бар), то есть пар может за счет этого дополнительно расширяться в турбине примерно на одну атмосферу и совершать дополнительную работу.
Если пренебречь работой, затрачиваемой на привод питательного насоса (она составляет около 1 % от полезной работы турбины), и считать, что изобары подогрева жидкости в координатах T, s и h, s совпадают с нижней пограничной кривой, то цикл Ренкина можно представить в координатах p, ; T,s; h,s следующим образом (рис. 12.4):
р1 = const; 1-2 - адиабатное расширение перегретого пара в турбине от р1 до р2; 2-3 - конденсация пара в конденсаторе при р2 = const; 3-4 - адиабатный процесс подачи конденсата в котел питательным насосом с повышением давления от р2 до р1. Необходимо отметить, что вследствие малой сжимаемости воды эта адиабата практически совпадает с изохорой на диаграмме p, , а на диаграммах T, s и h, s она вырождается в точку.
Термический к.п.д. цикла Ренкина t = (q1 - q2)/q1. Так как процессы подвода тепла 4-5-6-7-1- и отвода тепла 2-3 в цикле Ренкина являются изобарными, то q1 = h1 - h3, где h1 - энтальпия перегретого пара; h3 - энтальпия конденсата (заметим, что h3 h4); q2 = h2 - h3, где h2 - энтальпия отработанного в турбине пара. Тогда
.
Величину полезной работы за цикл равную
lц = q1 - q2 = h1 - h2
называют также адиабатным теплопадением.
Термический к.п.д. удобно определить с помощью h, s - диаграммы (рис. 12.5). По параметрам перегретого пара p1 и t1 наносят на диаграмму точку 1, соответствующую состоянию пара перед турбиной. Из этой точки проводят вертикаль до пересечения с изобарой р2. Точка их пересечения будет точкой 2. Ординаты точек 1 и 2 определяют значения h1 и h2. По изобаре р2 находят температуру конденсации при этом давлении ts2. Тогда h3 = cк ts2, где ск = 4,187 кДж/(кгк) - теплоемкость конденсата.
Одной из характеристик, позволяющих судить об экономичности паросилового цикла, является удельный расход пара в килограммах на единицу работы. Если принять в качестве единицы работы 1 МДж (1000 кДж), то удельный расход пара
,
где h1 и h2 - энтальпия, кДж/кг;
d - удельный расход пара, кг/МДж.
,
где h1 и h2 - энтальпия, кДж/кг,
d - удельный расход пара, кг/кВт ч.
Цикл Ренкина с перегревом пара является основным циклом теплосиловых установок, применяемых в современной теплоэнергетике.