
- •Техническая термодинамика
- •Введение
- •1. Основные понятия
- •1.1. Термодинамическая система, параметры состояния, уравнение состояния
- •1.2. Термодинамический процесс
- •1.3. Смеси газов, теплоемкость газов и газовых смесей
- •2. Первый закон термодинамики
- •2.1. Внутренняя энергия, работа изменения объема, теплота
- •2.2. Аналитическое выражение первого закона термодинамики
- •2.3. Энтальпия. Уравнение первого закона термодинамики через изменение энтальпии. Техническая работа
- •2.4. Уравнение первого закона термодинамики для потока газа
- •3. Второй закон термодинамики
- •3.1. Содержание и формулировки второго закона термодинамики. Круговые процессы или циклы. Цикл Карно
- •3.2. Энтропия. Аналитическое выражение второго закона термодинамики. Физический смысл энтропии. Тепловая диаграмма т, s
- •4. Термодинамические процессы идеального газа
- •4.1. Метод исследования процессов
- •4.2. Изохорный, изобарный, изотермический процессы
- •4.3. Адиабатный процесс
- •4.4. Политропный процесс
- •5. Равновесие термодинамических систем Термодинамические потенциалы.
- •6. Дифференциальные уравнения термодинамики
- •7. Реальные газы
- •8. Водяной пар
- •8.1. Основные понятия и определения
- •8.2. Процесс парообразования при постоянном давлении Диаграмма p, для пара. Расчет параметров
- •8.3. Таблицы водяного пара t, s и h, s-диаграммы для пара
- •8.4. Термодинамические процессы для пара Уравнение Клапейрона - Клаузиуса
- •9. Влажный воздух
- •10. Истечение и дросселирование газов и паров
- •10.1 Истечение газов. Основные понятия и математическое описание Адиабатное истечение из суживающегося сопла. Сопло Лаваля
- •10.2 Истечение пара. Истечение с учетом трения
- •10.3. Дросселирование газов и паров
- •11. Сжатие газов. Компрессоры.
- •11.1. Одноступенчатый компрессор объемного действия
- •11.2. Многоступенчатый компрессор
- •12. Циклы паросиловых установок
- •12.1. Цикл Карно для насыщенного пара
- •12.2. Цикл Ренкина
- •12.3. Цикл с промежуточным перегревом пара
- •12.4. Регенеративный цикл паросиловой установки
- •12.5. Теплофикационный цикл
- •13. Циклы поршневых двигателей внутреннего сгорания
- •13.1. Цикл двс с изохорным подводом теплоты
- •13.2 Цикл двс с изобарным подводом теплоты
- •13.3 Цикл двс со смешанным подводом теплоты
- •14. Циклы газотурбинных установок
- •14.1 Цикл гту с изобарным подводом теплоты
- •14.2 Цикл гту с изобарным подводом теплоты и регенерацией
- •14.3 Цикл гту с изохорным подводом теплоты
- •15. Циклы парогазовых установок
- •Библиографический список
10.2 Истечение пара. Истечение с учетом трения
Основные положения и формулы теории истечения газа, установленные выше, в полной мере относятся к процессам истечения пара. Вопрос усложняется лишь тем, что пар при адиабатном расширении может изменить свое агрегатное состояние и перейти из перегретого состояния в насыщенное. В связи с этим усложняется выбор показателя адиабаты к , входящего в основные расчетные формулы. Это заставляет во всех случаях, когда это возможно, производить расчет процесса истечения пара с применением h, s-диаграммы и с использованием формулы (10.20).
При расчете истечения пара через суживающееся сопло, как и в случае истечения газа, возможны три случая.
где f - выходное сечение сопла, h1, h2 и 2 снимаются с диаграммы h, s (рис. 10.8);
= кр. В этом случае происходит также полное расширение пара от р1 до р2 = ркр.
Скорость истечения пара равна wкр, а расход - Ymax.
,
,
где h1, hкр и кр снимаются с диаграммы h, s (рис. 10.9);
Рис. 10.9
При расчете истечения пара через сопло Лаваля можно также воспользо-
ваться рис. 10.10. Только в этом случае расширение от р1 до ркр происходит в суживающейся части сопла, а расширение от ркр до р2 - в расширяющейся части сопла Лаваля. Скорость в минимальном сечении сопла , а скорость на выходе из сопла Лаваля . Максимальный расход по одной из формул Ymax = wкрfmin/кр или Ymax = w2fвых/2. Из этих формул можно найти fmin и fвых.
Выведенные выше формулы скорости и секундного расхода газа и пара справедливы для обратимого процесса истечения, т.е. не учитывают силы трения рабочего тела о стенки канала и внутреннее трение.
Отношение действительной скорости истечения wq к теоретической w называют коэффициентом скорости или скоростным коэффициентом сопла = wq/w. Тогда wq = w. Для сопел современных турбин = 0,93 - 0,98.
Потеря кинетической энергии при течении с трением
,
где = (1 - 2) - коэффициент потери энергии в сопле.
Отношение действительной кинетической энергии рабочего тела wq2/2 к теоретической w2/2 называют к.п.д. сопла.
.
Следовательно, к.п.д. сопла с равно квадрату скоростного коэффициента сопла.
10.3. Дросселирование газов и паров
Если на пути движения газа (или пара) по трубопроводу имеется местное сужение (например, прикрытый вентиль, задвижка, клапан, диафрагма и т.д.), то при прохождении газа через это сужение происходит уменьшение его давления. Такой процесс, в котором газ расширяется без совершения работы, называется дросселированием или мятием. Явление дросселирования в технике распространено довольно широко. Каждый вентиль, задвижка и т.д., уменьшающие проходное сечение трубопровода, вызывают дросселирование, возникающее при этом, как неизбежный процесс. Во многих же случаях дросселирование вводится как необходимый процесс, осуществляемый для определенных целей. Так, например, дросселированием пара в некоторых паровых турбинах осуществляется изменение их мощности. Широко используется дросселирование в холодильной и криогенной технике.
В процессе дросселирования происходит следующее изменение состояния газа. При прохождении газа через суженное сечение (рис. 10.11) увеличивается его скорость и уменьшается давление. За суженным сечением происходит обратное явление: скорость газа уменьшается, а давление увеличивается, но до начального давления р1 оно не поднимается. При этом часть кинетической энергии вследствие трения в суженной части превращается в теплоту, которая воспринимается газом. Вследствие неразрывности потока можно скорости w1 и w2 на некотором удалении от сужения (в сечениях I-I и II-II) считать равными. Тогда можно предположить, что должны выровняться и давления, однако в действительности оказывается р1 > р2, следовательно, между сечениями I-I и II-II протекает необратимый процесс.
h1 = h2 . (10.35)
Таким образом, с достаточной для технических расчетов точностью можно считать, что при дросселировании энтальпия остается постоянной. Однако следует отметить, что соотношение (10.35) отмечает лишь конечный результат процесса, отнесенный к сечениям I-I и II-II, достаточно удаленным от сужения. В самом же сужении энтальпия сначала уменьшается, а потом возрастает до первоначальной величины (рис. 10.11).
Эффект Джоуля-Томсона. Опытами установлено, что в результате дросселирования изменяется температура рабочего тела. Это явление названо эффектом Джоуля-Томсона. Рассмотрим, как изменяется температура при дросселировании идеального и реального газа. Энтальпия идеального газа есть однозначная функция температуры: dh = cpdT. На основании (10.35) dh = 0, следовательно, и dT=0, т.е. получим Т1 = Т2. Таким образом, при дросселировании идеального газа его температура остается постоянной.
Для установления изменения температуры в реальном газе рассмотрим эффект при изменении давления на бесконечно малую величину. Температурный эффект при бесконечно малом изменении давления называют дифференциальным дроссель-эффектом и обозначают = dT/dp. Дифференциальный дроссель-эффект может быть определен по уравнению (6.19) из раздела дифференциальных уравнений термодинамики
.
Из этого уравнения при dh = 0 получим (10.36)
или . (10.37)
Температурный эффект при конечном изменении давления газа при дросселировании называют интегральным дроссель-эффектом. Тогда соответствующая разность температур найдется при интегрировании выражения (10.37):
. (10.38)
В зависимости от начального состояния реального газа его температура при дросселировании может как уменьшаться, так и увеличиваться. Так как уменьшение температуры реального газа при дросселировании наблюдается при сравнительно пониженных начальных температурах, а ее увеличение - при повышенных начальных температурах, то при некоторой промежуточной начальной температуре газа отрицательный знак температурного эффекта при дросселировании должен изменяться на положительный.
При этой начальной температуре, называемой температурой инверсии, температура реального газа при его дросселировании не будет изменяться, т.е. при температуре инверсии реальный газ при дросселировании будет вести себя как идеальный.
Анализ уравнения (10.37) показывает, что знак dT будет зависеть от знака выражения T(/T)p - и будет ему противоположен (т.к. при дросселировании dp < 0). При этом могут быть три случая:
1) > 0 dT < 0 положительный дроссель-эффект;
2) = 0 dT = 0 нулевой дроссель-эффект;
3) < 0 dT > 0 отрицательный дроссель-эффект.
Второй случай соответствует состоянию газа, когда его температура равна температуре инверсии, откуда температура инверсии
. (10.39)
Если считать, что свойства вещества описываются уравнением Ван-дер-Ваальса, то в точке максимума кривой инверсии удельный объем равен критическому (max = кр), давление pmax = 9 pкр, температура Tmax = 3Ткр. Правая ветвь инверсионной кривой пересекает ось температур в точке Т = 6,75 Ткр, а левая - в точке Т = 0,75 Ткр.