
- •Вопрос №1. Классификация и типы фундаментов. Вариантность проектирования фундаментов при выборе материалов для их постройки
- •Вопрос №2. Монолитные и сборные фундаменты. Экономическое обоснование их применения. Вариантность проектирования фундаментов при назначении глубины заложения
- •Вопрос №3. Классификация оснований. Инженерно-геологическая оценка строительных свойств грунтовых оснований
- •Вопрос №4. Основы проектирования фундаментов по предельным состояниям. Предельное состояние оснований по прочности/устойчивости
- •Вопрос №5. Определение размера подошвы центрально-нагруженных фундаментов на естественном основании. Графический способ определения ширины подошвы фундамента.
- •Вопрос №6. Расчет и проектирование ленточных фундаментов на естественном основании. Устройство деформационных швов
- •Внецентренно нагруженные фундаменты
- •Вопрос №7. Особенности расчета фундаментов стен подвальных этажей
- •Вопрос №8. Особенности расчета и проектирования прерывистых ленточных фундаментов
- •Вопрос №9. Определение размеров подошвы прямоугольных внецентренно нагруженных фундаментов
- •Вопрос №10. Расчет и конструирование тела фундамента на естественном основании. Проектирование жестких фундаментов
- •Черт. 21. Расчетная схема стаканной части подколонника
- •Вопрос №11. Гидроизоляция подземных помещений
- •Вопрос №14. Основы расчета гибких фундаментных плит на упругом основании
- •Вопрос №15. Статические испытания свай. Определение несущей способности свай по данным статических испытаний. Совместная работа свай в кусте
- •Вопрос №16. Динамические испытания. Формула Герсеванова. Процессы, протекающие в грунтах при забивке свай. Совместная работа свай в кусте
- •Вопрос №17. Классификация и типы свай и свайных фундаментов. Определение несущей способности забивных и буронабивных свай практическим методом
- •Вопрос №18. Определение несущей способности свай при горизонтальной нагрузке практическим методом и по данным испытаний
- •Вопрос №19. Расчет и проектирование свайных фундаментов при центральном нагружении
- •Вопрос №20. Расчет и проектирование внецентренно нагруженных свайных фундаментов
- •Вопрос №21. Расчет и проектирование свайных фундаментов в общем случае действия сил
- •Вопрос №22. Особенности расчета деформаций свайных фундаментов
- •Вопрос №23. Расчет и проектирование свайных фундаментов из козловых свай
- •Вопрос №24. Свайные ростверки. Основы расчета и проектирования свайных ростверков
- •Вопрос №25. Особенности проектирования свайных фундаментов в просадочных грунтах первого и второго типа. Определение величины отрицательного трения
- •Вопрос №26. Проектирование фундаментов мелкого заложения на просадочных грунтах. Определение расчетного давления на просадочные грунты
- •Вопрос №27. Фундаменты в вытрамбованных котлованах
- •Вопрос №28. Проектирование фундаментов на грунтовых и песчаных подушках.
- •Последовательность расчета фундамента на песчаной подушке
- •Вопрос №29. Расчет оснований при локальном замачивании
- •Вопрос №30. Физические методы укрепления грунтовых оснований. Проектирование оснований, уплотненных тяжелыми трамбовками
- •Вопрос №31. Химические методы улучшения грунтов оснований. Расчет оснований, закрепленных методом силикатизации. Технология однорастворной, друхрастворной и газовой силикатизации
- •Вопрос №32. Основные положения проектирования фундаментов на сильно сжимаемых основаниях
- •Способы строительства на слабых водонасыщенных грунтах:
- •Вопрос №33. Классификация и области применения фундаментов глубокого заложения. Опускные колодцы. Основы расчета и проектирования
- •Расчет опускных колодцев
- •Вопрос №34. Кессоны. Область применения, технология устройства, параметры погружения. Основы расчета и проектирования кессонов и кессонных фундаментов
- •Вопрос №35. Фундаменты глубокого заложения. Оболочки. Основы расчета и проектирования
- •Вопрос №36. Основные положения расчета и проектирования фундаментов под машины. Виброгасители
- •Вопрос №37. Особенности расчета и проектирования фундаментов на мерзлых грунтах
- •Конструкции и методы устройства фундаментов, возводимых по принципу I.
- •Вопрос №38. Усиление оснований существующих фундаментов. Реконструкция фундаментов существующих зданий
- •Примеры конструктивных решений по усилению и реконструкции оснований и фундаментов
Вопрос №14. Основы расчета гибких фундаментных плит на упругом основании
При расчете гибких фундаментов совместно с грунтовым основанием применяются:
теория местных упругих деформаций, основанная на гипотезе Винклера-Циммермана;
теория общих упругих деформаций, основанная на гипотезе упругого полупространства.
Теория местных упругих деформаций основана на гипотезе прямой пропорциональности между давлением и местной осадкой:
(1)
где s – упругая осадка грунта в месте приложения давления интенсивностью
p в рассматриваемой точке; ks коэффициент упругости основания (кН/м3), именуемый «коэффициентом постели».
Из приведенного выражения следует, что осадка поверхности основания возникает только в месте приложения давления pи поэтому модель грунта можно представить в виде совокупности отдельно стоящих пружин (рис.1,а).
В действительности на реальном грунтовом основании понижение поверхности наблюдается и за пределами нагруженного участка (рис.1,б), образуя упругую лунку. Кроме того, коэффициент постели не учитывает размеров подошвы фундамента и не является постоянной величиной для данного грунта. Как показали исследования, данная гипотеза дает достаточно достоверные результаты для слабых грунтовых оснований.
Рис. 1. Деформация поверхности грунта основания: а – по теории местных упругих деформаций; б – по теории общих упругих деформаций
Теория общих упругих деформаций основана на гипотезе упругого полупространства, согласно которой основание работает как сплошная однородная упругая среда, ограниченная сверху плоскостью и, бесконечно простирающаяся вниз и в стороны. Деформационные свойства упругой среды характеризуются величиной модуля деформации, который не зависит от величины нагрузки под подошвой фундамента, в отличие от коэффициента постели. При нагружении такого упругого основания деформации имеют место не только в месте приложения нагрузки, но и за ее пределами (рис.1,б), что и наблюдается под реальными фундаментами.
Исходными уравнениями деформаций основания в теории общих упругих деформаций являются:
- для случая плоской деформации – решение Фламана
(2)
- для случая пространственной и осесимметричной деформации – решение Буссинеска
(3)
где s осадка
упругой полуплоскости или полупространства;
сосредоточенная сила для
случая пространственной деформации; p погонная
полосовая нагрузка для случая плоской
деформации:
коэффициент деформируемости
полупространства; R,
x расстояние
до рассматриваемой точки ограничивающей
плоскости; D постоянная
интегрирования.
Вопрос №15. Статические испытания свай. Определение несущей способности свай по данным статических испытаний. Совместная работа свай в кусте
Метод испытания свай статической нагрузкой позволяет наиболее точно установить предельное сопротивление сваи с учетом всех геологических и гидрогеологических условий строительной площадки
Метод
используется либо с целью установления
предельного сопротивления сваи,
необходимого для последующего расчета
фундамента, либо с целью проверки на
месте несущей способности сваи,
определенной каким-либо другим методом,
например, практическим. Проверке
подвергаются в среднем до 1% от общего
числа погруженных свай, но не менее 2-х.
Нагрузка прикладывается ступенями,
равными
от ожидаемого предельного сопротивления
сваи. Каждая ступень выдерживается до
условной стабилизации осадки сваи.
Осадка считается условно стабилизировавшейся,
если ее приращение не превышает 0,1мм за
1 час наблюдения для песчаных грунтов
и за 2 часа для глинистых.
По данным испытаний строятся два графика:
Практика показала, что графики испытаний свай делятся на два типа (рис. 1.13б):
с характерным резким переломом, после которого осадка непрерывно возрастает без увеличения нагрузки, данная нагрузка в этом случае и принимается за предельную;
с плавным очертанием без резкого перелома, что затрудняет определение предельной нагрузки. В этом случае за предельную принимается та нагрузка, под воздействием которой испытываемая свая получила осадку S:
,
где ζ – переходной коэффициент, комплексно учитывает ряд факторов:
несоответствие между осадкой одиночной сваи и сваи в кусте,
кратковременность испытания (главный фактор) по сравнению с
длительностью эксплуатации здания и т.п., принимается равным ζ=0,2;
Su,mt – предельное значение средней осадки фундамента проектируемого здания (по СНиП 2.02.01-83*).
В итоге расчетная нагрузка на сваю по результатам статических испытаний:
,
где γс – коэффициент условий работы;
γg – коэффициент надежности по нагрузке;
Fu – частное значение, т.е. нормативное значение.
Совместная работа свай в кусте. Если рассматривать свайный куст из висячих свай, то эпюры вертикальных давлений под нижним концом каждой из свай (при расстоянии между сваями – с) будут накладываться друг на друга (см. схему). В результате максимальное давление под нижним концом данной группы свай может превысить величину давления от одной сваи σ2>σ1, возрастёт и площадь передачи давления на основание. При расстоянии между свай с > 3d – это влияние уже практически незначительно.
При расположении свай между осями от 3d до 6d грунт между сваями будет находиться в уплотненном состоянии и включается в работу совместно со сваями (см. схему). Такое расположение свай создаёт практически равномерное давление под их нижним концом и способствует увеличению несущей способности. Однако на практике, в целях сокращения объёмов работ по ростверку, стремятся расположить сваи на минимальном расстоянии, т.е. выбирают с=3d, что рассматривается как оптимальная величина.
Следует подчеркнуть, что такой свайный куст будет получать осадку большую по сравнению с одиночной сваей, при условии равных давлений под остриём.