
- •Статические и динамические измерения. Метод непосредственной оценки (прямого преобразования) и метод сравнения. Однократные многократные измерения. Алгоритм измерения.
- •Средства измерений (си). Мера. Измерительный преобразователь. Измерительная установка . Измерительная система. Эталон. Образцовое си. Рабочее си.
- •Качественная и количественная характеристика измеряемых величин. Единицы измерений. Единство измерений.
- •Ситуационное моделирование. Измерительная информация (измерение как источник информации).
- •Обнаружение и исключение ошибок (нормальный закон, функция Лапласа, правило «трех сигм»).
- •Однократное измерение (роль априорной информации и пять ее вариантов).
- •Многократное измерениес равноточными значениями отсчета (дисперсия, равноточные и неравноточные значения отсчета).
- •Точечные оценки числовых характеристик (определение точечности; требования к оценкам: состоятельность, несмещенность, эффективность).
- •Среднее арифметическое значение рузультата измерения. Математическое ожидание среднего арифметического. Задача оценки среднего значения и метод ее решения.
- •Точечная оценка дисперсии результата измерения. Стандартное отклонение. Метод максимального правдоподобия как универсальный метод отыскания эффективных оценок числовых характеристик.
- •Проверка на нормальность закона распределения вероятности результата измерения с помощью гистограмм.
- •Критерий согласия Пирсона (х2 – хи-квадрат). Гипотеза о соответствии или несоответствии эмпирического закона распределения вероятности. Алгоритм проверки на нормальность закона распределения.
- •Статистика критерия, Для проверки критерия вводится статистика:
- •Ошибки перго рода. Ошибка второго рода. Вероятность этих ошибок при проверке на нормальность закона распределения. Графики плотности распределения вероятности (хи-квадрат).
- •Критерий согласия. Составной критерий и облость его применения.
- •Нормируемые метрологические характеристики (определения, группы).
- •Нормированние метрологических характеристик средств измерений.
- •Классы точности средств измерений (определение, примеры).
- •Метрологическая надежность средств измерений.
- •Измерения и оценивание качества (понятия и определения; методы определения качества; экспертные комисси экспертные оценки, обработка эксперетных оценок).
- •Основные понятия и определения в облости стандартизации. Цели и задачи стандартизации. Виды и методы стандартизации. Категории и виды стандартов.
- •Основные принцепы стандартизации. Органы и службы. Государственные и отраслевые системы стандартов на общетехнические нормы. Международная стандартизация. Сертификация продукции.
- •Проверка средств измерений. Метрологическая аттестация средств измерений
- •Основы метрологического обеспечения измерений.
Контрольные вопросы по дисциплине «Метрология»
Метрология. Законодательная метрология. Физическая величина и ее значение. Единица физической величины. Прямо и косвенное измерениние. Совокупность и совместные измерения. Абсолютные и относительные измерения.
Метрология – наука об изучениях методов и их средствах обеспечивание их единства и способы достиж.требов.точности. Предмет измерения их единства и точность объекты единици величин, приборы эталаны, методики выполн. Измерений. Цель – извлеч.кол-венный инфы о свойствах объектов и процессов с созданной точностью и достоверностью. Средство м.- это совокупность средств измерений и метрологич.стандартов, которые обеспеч.по радоцион.использ. Основные задачи: 1-обеспеч.единства зимерений, 2-устанавл.единиц.физ.величин., 3- обеспеч.единообраз.средст и рачих.
Законодательная метрология - это один из разделов метрологии, совмещающий комплексы общепринятых правил, норм , требований и других вопросов, требующих контроля и регламентации со стороны государства. Изучение этих аспектов направлено на метрологическое обеспечение единства измерений и однообразия средств измерений;
Главными задачами и целями метрологии являются - изучение всех аспектов измерений физических величин. А также международное содействие в области метрологии и законодательные элементы.
Объектом метрологии являются физические величины. Существуют различные физические объекты, обладающие разнообразными физическими свойствами, количество которых неограниченно. Выделяют некоторое ограниченное количество свойств, общих для ряда объектов в качественном отношении, но индивидуальных для каждого из них в количественном отношении. Такие свойства получили название физических величин. Понятие «физическая величина» в метрологии, как и в физике, физическая величина трактуется как свойство физических объектов (систем), общее в качественном отношении многим объектам, но в количественном отношении индивидуальное для каждого объекта, т.е. как свойство, которое может быть для одного объекта в то или иное число раз больше или меньше, чем для другого (например, длина, масса, плотность, температура, сила, скорость). Количественное содержание свойства, соответствующего понятию «физическая величина», в данном объекте — размер физической величины. Размер физической величины существует объективно, вне зависимости от того, что мы знаем о нем.
Прямое измерение – измерение, при котором искомое значение величины находят непосредственно из опытных данных. Косвенное измерение – измерение, при котором искомое значение величины находят по известной зависимости межу этой величиной и величинами, подвергаемыми прямым измерениям (нахождение плотности по массе и размерам) Совокупные измерения – производимые одновременно измерения нескольких одноименных величин, при которых искомые значения величин находят из системы уравнений, получаемых при прямых измерениях (нахождение массы гири в наборе по известной массе одной из них и по результатам сравнения масс различных сочетаний гирь) . Совместные измерения – проводимые одновременно измерения двух или более неодноименных величин для выявления зависимости между ними. Абсолютными - измерения, которые основаны на прямых измерениях одной или нескольких основных величин или на использовании значений физических констант. Относительными - измерения, при которых искомую величину сравнивают с одноименной величиной, играющей роль единицы или принятой за исходную.
Статические и динамические измерения. Метод непосредственной оценки (прямого преобразования) и метод сравнения. Однократные многократные измерения. Алгоритм измерения.
Статическое измерение – измерение физической величины, принимаемой в соответствии с конкретной измерительной задачей за неизменную на протяжении времени измерения.
Динамическое измерение – измерение изменяющейся по размеру физической величины.
Строго говоря, все физические величины подвержены тем или иным изменениям во времени. В этом убеждает применение все более чувствительных средств измерений, которые дают возможность обнаруживать изменение величин, ранее считавшихся const, поэтому разделение измерений на динамические и статические является условным.
"Неизменных" физических величин, кроме физических констант в практике измерений почти нет, все величины различаются только в соответствии со скоростью изменения.
Статические и динамические измерения наиболее логично рассматривать в зависимости от режима получения средством измерения входного сигнала измерительной информации. При измерении встатическом режиме скорость изменения входного сигнала несоизмеримо ниже скорости его преобразования в измерительной цепи, и результаты фиксируются без динамических искажений.
При измерении в динамическом режиме появляются дополнительные динамические погрешности, связанные со слишком быстрым изменением либо самой измеряемой физической величины, либо входного сигнала измерительной информации, поступающего от постоянной измеряемой величины. Например, измерение температуры с помощью ртутного термометра несоизмеримо медленнее измерений электронными термометрами, следовательно, применяемые средства измерений могут в значительной степени определить режим измерений.
По числу повторных измерений одной и той же величины различают однократные и многократные измерения. Однократное измерение – измерение, выполненное один раз.
Во многих случаях на практике выполняются именно однократные измерения. Например, измерение конкретного момента времени по часам обычно производится один раз.
Многократное измерение – измерение физической величины одного и того же размера, результат которого получен из нескольких следующих друг за другом измерений, т. е. состоящее из ряда однократных измерений.
В зависимости от поставленной цели число повторных измерений может колебаться в широких пределах (от двух измерений до нескольких десятков и даже сотен). Многократные измерения проводят или для страховки от грубых погрешностей (в таком случае достаточно трех-пяти измерений) или для последующей математической обработки результатов (часто более пятнадцати измерений с последующими расчетами средних значений, статистической оценкой отклонений и др.). Многократные измерения называют также«измерения с многократными наблюдениями».
Абсолютная и относительная погрешность измерения. Систематическая, случайная и грубая (промах) погрешности измерений. Погрешность метода измерений. Инструментальная (аппаратурная) погрешность измерений.
Под
абсолютной погрешностью измерения
понимают разность между полученным в
ходе измерения и истинным значением
физической величины:
Относительная
погрешность представляет собой
отношение абсолютной погрешности к
истинному значению измеряемой величины:
Систематическая погрешность — погрешность, изменяющаяся во времени по определённому закону (частным случаем является постоянная погрешность, не изменяющаяся с течением времени). Систематические погрешности могут быть связаны с ошибками приборов (неправильная шкала, калибровка и т.п.), неучтёнными экспериментатором.
Случайная погрешность — составляющая погрешности измерения, изменяющаяся случайным образом в серии повторных измерений одной и той же величины, проведенных в одних и тех же условиях.
Грубая погрешность (промах) — погрешность, возникшая вследствие недосмотра экспериментатора или неисправности аппаратуры (например, если экспериментатор неправильно прочёл номер деления на шкале прибора или если произошло замыкание в электрической цепи).
ПОГРЕШНОСТЬ МЕТОДА ИЗМЕРЕНИЙ - (погрешность метода) [errorofmethod] - составляющая систематической погрешности измерений, обусловленная несовершенством принятого метода измерений.
Инструментальные / приборные погрешности — погрешности, которые определяются погрешностями применяемых средств измерений и вызываются несовершенством принципа действия, неточностью градуировкишкалы, ненаглядностью прибора.