
- •Статика, общие сведения.
- •2 Аксиомы статики
- •3 Связи и их реакции Соединение тел между собой
- •Связь с помощью нитей (нить, цепь, трос)
- •Соединение тел с помощью шарниров.
- •Жесткая заделка.
- •Сложение плоской системы сходящихся сил. Геометрическое условие равновесия.
- •Условия равновесия системы сходящихся сил в векторной форме
- •Условия равновесия системы сходящихся сил в алгебраической форме
- •9Центр тяжести материального тела.
- •10Центр тяжести объема, плоской фигуры. Центр тяжести некоторых плоских фигур.
- •Центр тяжести дуги окружности
- •Центр тяжести площади сектора круга
- •11Определение положения центра тяжести плоской фигуры по центрам тяжести ее частей.
- •12Пара сил на плоскости. Эквивалентность пар сил.
- •13Сложение пар сил. Условие равновесия пар сил.
- •Условия равновесия пар сил.
- •14Момент силы относительно оси.
- •15Момент силы, относительно точки. Приведение силы к точке.
- •Трение скольжения
- •21 Реальные связи. Трение качения и его законы.
- •27 Аналитические формулы для моментов сил относительно координатных осей.
- •28 Основные понятия кинематики.
- •29 Способы задания движения точки.
- •30 Определение скорости и ускорения точки при естественном способе задания ее движения.
- •Разложение вектора ускорения по естественным координатным осям. Частные случаи при различных видах движения точки
- •31 Частные случаи движения точки.
- •В этом случае ,так как . Тогда полное ускорение по величине и направлению равно .
- •32 Поступательное движение твердого тела.
- •33 Вращательное движение твердого тела.
- •34 Частные случаи вращательного движения.
- •35 Скорости и ускорения различных точек вращающегося тела.
- •36 Сложное движение точки.
- •37 Плоскопараллельное движение тела.
- •38Определение скорости любой точки тела при плоскопараллельном движении.
- •39Теорема о сложении ускорений. (Теорема Кориолиса).
- •40Основные понятия и аксиомы динамики. Свободная и несвободная точка.
- •Аксиомы классической механики
- •41Силы инерции. Принцип Даламбера.
- •Напряженно-деформированное состояние детали. Метод сечений.
- •Напряженно-деформированное состояние детали. Напряжение - как мера внутренних сил
- •Напряженное состояние в точке.
- •Продольная и поперечная деформации. Закон Гука. Модуль упругости. Коэффициент Пуассона.
- •Частный случай плоского напряженного состояния - чистый сдвиг. Закон Гука при сдвиге.
- •Экспериментальные исследования механических свойств при проведении стандартных испытаний на растяжение.
- •Условие прочности, коэффициент запаса прочности, допускаемые напряжения. Общие сведения.
- •Расчеты на прочность стержней при растяжении-сжатии
- •Особенности расчета статически неопределимых стержневых систем.
- •Напряженно-деформированное состояние при прямом поперечном изгибе.
- •Касательные напряжения при изгибе.
- •Условие прочности при прямом поперечном изгибе.
- •Эпюры поперечных сил Правила знаков и построения эпюр.
- •Геометрические характеристики плоских сечений.
- •Расчеты на жесткость при изгибе.
- •Кручение вала (стержня) круглого поперечного сечения. Эпюры крутящих моментов.
- •Критическое напряжение. Пределы применимости формулы Эйлера.
- •Формулы Ясинского.
14Момент силы относительно оси.
К
твердому телу в точке А приложена сила
.
Проведем в пространстве ось (например
z). На оси z произвольно выберем точку
О . Соединим точку О с точкой А
радиус-вектором. Через точку О проведем
плоскость П перпенди-кулярную оси z.
Спроекти-руем вектора
и
на плоскость П .
Моментом силы относительно оси называется вектор равный моменту проекции силы на плоскость П относительно точки О пересечения оси z с плоскостью П.
Рис. 3-3
Свойства момента силы относительно оси:
Момент силы относительно оси равен нулю, если сила параллельна оси. В этом случае равна нулю проекция силы на плоскость, перпендикулярную оси.
Момент силы относительно оси равен нулю, если линия действия силы пересекается с осью. В этом случае равно нулю плечо силы.
15Момент силы, относительно точки. Приведение силы к точке.
Момент силы относительно точки
Если под действием приложенной силы твердое тело может совершать вращение вокруг некоторой точки, то для того, чтобы охарактеризовать вращательный эффект силы, необходимо ввести новое понятие - момент силы относительно точки.
Рассмотрим силу , приложенную к телу в точке А. Из некоторой точки О опустим перпендикуляр на линию действия силы .
Плечом h силы относительно точки О называется кратчайшее расстояние между этой точкой и линией действия силы.
Через силу и точку О можно провести плоскость. Сила пытается вращать тело вокруг оси, которая проходит через точку О и которая перпендикулярна плоскости в которой лежит сила. Точка О называется моментной точкой.
М
оментом
силы
относительно точки О называется вектор
,
приложенный в этой точке и равный
векторному произведению радиус-вектора
,
соединяющего эту точку с точкой приложения
силы, на вектор силы
.
Модуль вектора
равен произведению модуля силы
на ее плечо
.
Момент силы относительно точки О направлен перпендикулярно плоскости, в которой лежат сила и моментная точка (радиус-вектор), в том направлении откуда видно стремление силы вращать тело против движения часовой стрелки.
Рис. 3-4
Момент силы относительно точки не меняется от переноса силы вдоль линии ее действия.
Момент силы равен нулю, если линия действия силы проходит через моментную точку.
Если
сила
задана своими проекциями
на оси координат и даны координаты
точки приложения этой силы, то момент
силы относительно начала координат
вычисляется следующим образом:
Проекции момента на оси координат равны:
16Приведение к точке плоской системы произвольно расположенных сил.
17 Теорема Вариньона. Условие равновесия плоской системы произвольно расположенных сил и их различные формы.
18 Балочная система сил. Разновидности опор и виды нагрузок.
19 Статически определимые и статически неопределимые.задачи.
Для любой плоской системы сил, действующих на твердое тело, имеется три независимых условия равновесия. Следовательно, для любой плоской системы сил из условий равновесия можно найти не более трех неизвестных.
В случае пространственной системы сил, действующих на твердое тело, имеется шесть независимых условия равновесия. Следовательно, для любой пространственной системы сил из условий равновесия можно найти не более шести неизвестных.
Задачи, в которых число неизвестных не больше числа независимых условий равновесия для данной системы сил, приложенных к твердому телу, называются статически определимыми.
В противном случае задачи статически неопределимы.
20 Реальные связи. Трение скольжения и его законы.