
- •Статика, общие сведения.
- •2 Аксиомы статики
- •3 Связи и их реакции Соединение тел между собой
- •Связь с помощью нитей (нить, цепь, трос)
- •Соединение тел с помощью шарниров.
- •Жесткая заделка.
- •Сложение плоской системы сходящихся сил. Геометрическое условие равновесия.
- •Условия равновесия системы сходящихся сил в векторной форме
- •Условия равновесия системы сходящихся сил в алгебраической форме
- •9Центр тяжести материального тела.
- •10Центр тяжести объема, плоской фигуры. Центр тяжести некоторых плоских фигур.
- •Центр тяжести дуги окружности
- •Центр тяжести площади сектора круга
- •11Определение положения центра тяжести плоской фигуры по центрам тяжести ее частей.
- •12Пара сил на плоскости. Эквивалентность пар сил.
- •13Сложение пар сил. Условие равновесия пар сил.
- •Условия равновесия пар сил.
- •14Момент силы относительно оси.
- •15Момент силы, относительно точки. Приведение силы к точке.
- •Трение скольжения
- •21 Реальные связи. Трение качения и его законы.
- •27 Аналитические формулы для моментов сил относительно координатных осей.
- •28 Основные понятия кинематики.
- •29 Способы задания движения точки.
- •30 Определение скорости и ускорения точки при естественном способе задания ее движения.
- •Разложение вектора ускорения по естественным координатным осям. Частные случаи при различных видах движения точки
- •31 Частные случаи движения точки.
- •В этом случае ,так как . Тогда полное ускорение по величине и направлению равно .
- •32 Поступательное движение твердого тела.
- •33 Вращательное движение твердого тела.
- •34 Частные случаи вращательного движения.
- •35 Скорости и ускорения различных точек вращающегося тела.
- •36 Сложное движение точки.
- •37 Плоскопараллельное движение тела.
- •38Определение скорости любой точки тела при плоскопараллельном движении.
- •39Теорема о сложении ускорений. (Теорема Кориолиса).
- •40Основные понятия и аксиомы динамики. Свободная и несвободная точка.
- •Аксиомы классической механики
- •41Силы инерции. Принцип Даламбера.
- •Напряженно-деформированное состояние детали. Метод сечений.
- •Напряженно-деформированное состояние детали. Напряжение - как мера внутренних сил
- •Напряженное состояние в точке.
- •Продольная и поперечная деформации. Закон Гука. Модуль упругости. Коэффициент Пуассона.
- •Частный случай плоского напряженного состояния - чистый сдвиг. Закон Гука при сдвиге.
- •Экспериментальные исследования механических свойств при проведении стандартных испытаний на растяжение.
- •Условие прочности, коэффициент запаса прочности, допускаемые напряжения. Общие сведения.
- •Расчеты на прочность стержней при растяжении-сжатии
- •Особенности расчета статически неопределимых стержневых систем.
- •Напряженно-деформированное состояние при прямом поперечном изгибе.
- •Касательные напряжения при изгибе.
- •Условие прочности при прямом поперечном изгибе.
- •Эпюры поперечных сил Правила знаков и построения эпюр.
- •Геометрические характеристики плоских сечений.
- •Расчеты на жесткость при изгибе.
- •Кручение вала (стержня) круглого поперечного сечения. Эпюры крутящих моментов.
- •Критическое напряжение. Пределы применимости формулы Эйлера.
- •Формулы Ясинского.
12Пара сил на плоскости. Эквивалентность пар сил.
Парой сил называется система двух равных по модулю, параллельных и направленных в противоположные стороны сил, действующих на абсолютно твердое тело.
Плоскостью действия пары сил называется плоскость в которой расположены эти силы.
Две пары сил называются эквивалентными, если их действие на твердое тело одинаково при прочих равных условиях.
Теорема об эквивалентности пар сил. Пару сил, действующую на твердое тело, можно заменить другой парой сил, расположенной в той же плоскости действия и имеющий одинаковый с первой парой момент.
Доказательство:
Пусть на твердое тело действует пара
сил
.
П
еренесем
силу
в точку
,
а силу
в точку
.
Проведем через точки
две любые параллельные прямые,
пересекающие линии действия сил пары.
Соединим точки
отрезком прямой и разложим силы
в
точке
и
в точке
по правилу параллелограмма.
Так как
,
то
и
Поэтому
эквивалентна системе
,
а эта система эквивалентна системе
,
так как
эквивалентна нулю.
Таким образом мы заданную пару сил заменили другой парой сил . Докажем, что моменты у этих пар сил одинаковы.
Момент исходной
пары сил
численно равен площади параллелограмма
,
а момент пары сил
численно равен площади параллелограмма
.
Но площади этих параллелограммов
равны, так как площадь треугольника
равна площади треугольника
.
Что и требовалось доказать.
Выводы:
Пару сил как жесткую фигуру можно как угодно поворачивать и переносить в ее плоскости действия.
У пары сил можно изменять плечо и силы, сохраняя при этом момент пары и плоскость действия.
13Сложение пар сил. Условие равновесия пар сил.
Теорема о
сложении пар сил.
Две пары
сил, действующих на одно и то же твердое
тело, и лежащие в пересекающихся
плоскостях, можно заменить одной
эквивалентной парой сил, момент которой
равен сумме моментов заданных пар
сил.
Доказательство:
Пусть имеются две пары сил, расположенные
в пересекающихся плоскостях. Пара сил
в плоскости
характеризуется моментом
,
а пара сил
в плоскости
характеризуется моментом
.
Расположим пары
сил так, чтобы плечо пар было общим и
располагалось на линии пересечения
плоскостей. Складываем силы, приложенные
в точке А и в точке В,
.
Получаем пару сил
.
Что и требовалось доказать.
Условия равновесия пар сил.
Если на твердое тело действует несколько пар сил, как угодно расположенных в пространстве, то последовательно применяя правило параллелограмма к каждым двум моментам пар сил, можно любое количество пар сил заменить одной эквивалентной парой сил, момент которой равен сумме моментов заданных пар сил.
Теорема. Для равновесия пар сил, приложенных к твердому телу, необхо-димо и достаточно, чтобы момент эквивалентной пары сил равнялся нулю.
Теорема. Для равновесия пар сил, приложенных к твердому телу, необходимо и достаточно, чтобы алгебраическая сумма проекций моментов пар сил на каждую из трех координатных осей была равна нулю.