
- •Статика, общие сведения.
- •2 Аксиомы статики
- •3 Связи и их реакции Соединение тел между собой
- •Связь с помощью нитей (нить, цепь, трос)
- •Соединение тел с помощью шарниров.
- •Жесткая заделка.
- •Сложение плоской системы сходящихся сил. Геометрическое условие равновесия.
- •Условия равновесия системы сходящихся сил в векторной форме
- •Условия равновесия системы сходящихся сил в алгебраической форме
- •9Центр тяжести материального тела.
- •10Центр тяжести объема, плоской фигуры. Центр тяжести некоторых плоских фигур.
- •Центр тяжести дуги окружности
- •Центр тяжести площади сектора круга
- •11Определение положения центра тяжести плоской фигуры по центрам тяжести ее частей.
- •12Пара сил на плоскости. Эквивалентность пар сил.
- •13Сложение пар сил. Условие равновесия пар сил.
- •Условия равновесия пар сил.
- •14Момент силы относительно оси.
- •15Момент силы, относительно точки. Приведение силы к точке.
- •Трение скольжения
- •21 Реальные связи. Трение качения и его законы.
- •27 Аналитические формулы для моментов сил относительно координатных осей.
- •28 Основные понятия кинематики.
- •29 Способы задания движения точки.
- •30 Определение скорости и ускорения точки при естественном способе задания ее движения.
- •Разложение вектора ускорения по естественным координатным осям. Частные случаи при различных видах движения точки
- •31 Частные случаи движения точки.
- •В этом случае ,так как . Тогда полное ускорение по величине и направлению равно .
- •32 Поступательное движение твердого тела.
- •33 Вращательное движение твердого тела.
- •34 Частные случаи вращательного движения.
- •35 Скорости и ускорения различных точек вращающегося тела.
- •36 Сложное движение точки.
- •37 Плоскопараллельное движение тела.
- •38Определение скорости любой точки тела при плоскопараллельном движении.
- •39Теорема о сложении ускорений. (Теорема Кориолиса).
- •40Основные понятия и аксиомы динамики. Свободная и несвободная точка.
- •Аксиомы классической механики
- •41Силы инерции. Принцип Даламбера.
- •Напряженно-деформированное состояние детали. Метод сечений.
- •Напряженно-деформированное состояние детали. Напряжение - как мера внутренних сил
- •Напряженное состояние в точке.
- •Продольная и поперечная деформации. Закон Гука. Модуль упругости. Коэффициент Пуассона.
- •Частный случай плоского напряженного состояния - чистый сдвиг. Закон Гука при сдвиге.
- •Экспериментальные исследования механических свойств при проведении стандартных испытаний на растяжение.
- •Условие прочности, коэффициент запаса прочности, допускаемые напряжения. Общие сведения.
- •Расчеты на прочность стержней при растяжении-сжатии
- •Особенности расчета статически неопределимых стержневых систем.
- •Напряженно-деформированное состояние при прямом поперечном изгибе.
- •Касательные напряжения при изгибе.
- •Условие прочности при прямом поперечном изгибе.
- •Эпюры поперечных сил Правила знаков и построения эпюр.
- •Геометрические характеристики плоских сечений.
- •Расчеты на жесткость при изгибе.
- •Кручение вала (стержня) круглого поперечного сечения. Эпюры крутящих моментов.
- •Критическое напряжение. Пределы применимости формулы Эйлера.
- •Формулы Ясинского.
Сложение плоской системы сходящихся сил. Геометрическое условие равновесия.
Системой сходящихся сил (или пучком сил) называется такая система сил, линии действия которой пересекаются в одной точке – центре пучка.
Равнодействующая системы сходящихся сил равна векторной сумме слагаемых сил и определяется замыкающей стороной силового многоугольника, построенного на слагаемых силах как на составляющих. Точка приложения равнодействующей силы совпадает с точкой пересечения линий действия сил.
Проекции равнодействующей силы на оси координат равны алгебраической сумме проекций составляющих сил на эти оси.
Рис. 3-3
Условия равновесия системы сходящихся сил в векторной форме
Для равновесия сходящейся системы сил, приложенных к твердому телу, необходимо и достаточно, чтобы равнодействующая сила была равна нулю.
Условия равновесия системы сходящихся сил в алгебраической форме
Для равновесия пространственной системы сходящихся сил, приложенных к твердому телу, необходимо и достаточно, чтобы суммы проекций всех сил на каждую из трех прямоугольных осей координат были равны нулю.
5 Определение равнодействующей системы сходящихся сил методом проекций.
6Аналитическое условие равновесия.
7Расчет плоских ферм. Определение усилий в стержнях фермы по способу вырезания узлов.
8Определение усилий в стержнях по способу Риттера.
9Центр тяжести материального тела.
Центр тяжести.
Центром тяжести тела называется геометрическая точка, жестко связанная с этим телом, и являющаяся центром параллельных сил тяжести, приложенных к отдельным элементарным частицам тела.
10Центр тяжести объема, плоской фигуры. Центр тяжести некоторых плоских фигур.
Координаты центра тяжести неоднородного твердого тела в выбранной системе отсчета определяются следующим образом:
где
- вес единицы объема
тела (удельный вес)
- Вес всего тела.
Для однородного
твердого тела
и формулы получают вид:
- Объем всего
тела.
Если твердое тело представляет собой неоднородную поверхность, то координаты центра тяжести в выбранной системе отсчета определяются следующим образом:
где
- вес единицы площади тела ,
- Вес
всего тела.
Для однородной
поверхности
и формулы получают вид:
- Площадь
поверхности.
Если твердое тело представляет собой неоднородную линию, то координаты центра тяжести в выбранной системе отсчета определяются следующим образом:
где
- вес единицы длины тела ,
- Вес всего тела.
Для однородной
линии
и формулы получают вид:
- Длина линии.
Центр тяжести дуги окружности
Для дуги равной
половине окружности
,
,
,
Центр тяжести площади сектора круга
Для площади равной
половине круга
,
,
,
11Определение положения центра тяжести плоской фигуры по центрам тяжести ее частей.
Способы определения координат центра тяжести.
Исходя из полученных выше общих формул, можно указать конкретные способы определения координат центров тяжести тел.
1
.
Симметрия. Если
однородное тело имеет плоскость, ось
или центр симметрии, то его центр тяжести
лежит соответственно в плоскости
симметрии, оси симметрии или в центре
симметрии.
2. Разбиение. Тело разбивается на конечное число частей, для каждой из которых положение центра тяжести и площадь известны.
3. Дополнение. Частный случай способа разбиения. Он применяется к телам имеющим вырезы, если центры тяжести тела без выреза и вырезанной части известны.