
- •Статика, общие сведения.
- •2 Аксиомы статики
- •3 Связи и их реакции Соединение тел между собой
- •Связь с помощью нитей (нить, цепь, трос)
- •Соединение тел с помощью шарниров.
- •Жесткая заделка.
- •Сложение плоской системы сходящихся сил. Геометрическое условие равновесия.
- •Условия равновесия системы сходящихся сил в векторной форме
- •Условия равновесия системы сходящихся сил в алгебраической форме
- •9Центр тяжести материального тела.
- •10Центр тяжести объема, плоской фигуры. Центр тяжести некоторых плоских фигур.
- •Центр тяжести дуги окружности
- •Центр тяжести площади сектора круга
- •11Определение положения центра тяжести плоской фигуры по центрам тяжести ее частей.
- •12Пара сил на плоскости. Эквивалентность пар сил.
- •13Сложение пар сил. Условие равновесия пар сил.
- •Условия равновесия пар сил.
- •14Момент силы относительно оси.
- •15Момент силы, относительно точки. Приведение силы к точке.
- •Трение скольжения
- •21 Реальные связи. Трение качения и его законы.
- •27 Аналитические формулы для моментов сил относительно координатных осей.
- •28 Основные понятия кинематики.
- •29 Способы задания движения точки.
- •30 Определение скорости и ускорения точки при естественном способе задания ее движения.
- •Разложение вектора ускорения по естественным координатным осям. Частные случаи при различных видах движения точки
- •31 Частные случаи движения точки.
- •В этом случае ,так как . Тогда полное ускорение по величине и направлению равно .
- •32 Поступательное движение твердого тела.
- •33 Вращательное движение твердого тела.
- •34 Частные случаи вращательного движения.
- •35 Скорости и ускорения различных точек вращающегося тела.
- •36 Сложное движение точки.
- •37 Плоскопараллельное движение тела.
- •38Определение скорости любой точки тела при плоскопараллельном движении.
- •39Теорема о сложении ускорений. (Теорема Кориолиса).
- •40Основные понятия и аксиомы динамики. Свободная и несвободная точка.
- •Аксиомы классической механики
- •41Силы инерции. Принцип Даламбера.
- •Напряженно-деформированное состояние детали. Метод сечений.
- •Напряженно-деформированное состояние детали. Напряжение - как мера внутренних сил
- •Напряженное состояние в точке.
- •Продольная и поперечная деформации. Закон Гука. Модуль упругости. Коэффициент Пуассона.
- •Частный случай плоского напряженного состояния - чистый сдвиг. Закон Гука при сдвиге.
- •Экспериментальные исследования механических свойств при проведении стандартных испытаний на растяжение.
- •Условие прочности, коэффициент запаса прочности, допускаемые напряжения. Общие сведения.
- •Расчеты на прочность стержней при растяжении-сжатии
- •Особенности расчета статически неопределимых стержневых систем.
- •Напряженно-деформированное состояние при прямом поперечном изгибе.
- •Касательные напряжения при изгибе.
- •Условие прочности при прямом поперечном изгибе.
- •Эпюры поперечных сил Правила знаков и построения эпюр.
- •Геометрические характеристики плоских сечений.
- •Расчеты на жесткость при изгибе.
- •Кручение вала (стержня) круглого поперечного сечения. Эпюры крутящих моментов.
- •Критическое напряжение. Пределы применимости формулы Эйлера.
- •Формулы Ясинского.
Напряженно-деформированное состояние при прямом поперечном изгибе.
Касательные напряжения при изгибе.
Рассмотрим
условие равновесия элемента (рис. 5)
составив для него уравнение статики
:
откуда после несложных преобразований, учитывая, что
получаем формулу для касательных напряжений при нормальном поперечном изгибе призматического стержня которая называется формулой Журавского.
Рис.6.
Распределение касательных напряжений
по контуру прямоугольного сечения
В этой формуле by — ширина сечения в том месте, где определяются касательные напряжения, а статический момент, подставляемый в эту формулу, может быть вычислен как для верхней, так и для нижней части (статические моменты этих частей сечения относительно его центральной оси Ох отличаются только знаком, так как статическим момент всего сечения равен нулю).
В качестве примера применения формулы Журавского построим эпюру касательных напряжений для случая прямоугольного поперечного сечения балки (рис. 6.). Учитывая, что для этого сечения
получаем
где F=bh—площадь прямоугольника.
Как видно из формулы, касательные напряжения по высоте сечения меняются по закону квадратичеокой параболы, достигая максимума на нейтральной оси
Сделаем
несколько замечаний, касающихся расчетов
на прочность при прямом поперечном
изгибе. В отличие от простых видов
деформации, когда в поперечных сечениях
стержня возникает лишь один силовой
фактор, к которым относятся и изученные
выше растяжение (сжатие) и чистый изгиб,
прямой поперечный изгиб должен быть
отнесен к сложным видам деформации. В
поперечных сечениях стержня при
поперечном изгибе возникают два силовых
фактора: изгибающий момент Мх
и поперечная сила Qy
(рис. 7), напряженное состояние является
упрощенным плоским, при котором в
окрестности произвольно выбранных
точек поперечного сечения действуют
нормальные
и
касательные
напряжения.
Поэтому условие прочности для таких
точек должно быть сформулировано на
основе какого-либо уже известного
критерия прочности.
Однако учитывая, что наибольшие нормальные напряжения возникают в крайних волокнах, где касательные напряжения отсутствуют (рис. 7), а наибольшие касательные напряжения во многих случаях имеют место в нейтральном слое, где нормальные напряжения равны нулю, условия прочности в этих случаях формулируются раздельно по нормальным и касательным напряжениям
Рис.7
Распределение нормальных и касательных
напряжений по контуру сечения
Рис.8.
К сравнительной оценке модулей напряжения
Покажем, что доминирующая роль в расчетах на прочность балки, подвергнутой поперечному изгибу, будет принадлежать расчету по нормальным напряжениям. Для этого оценим порядок max и max на примере консольной балки, показанной на рис. 8:
так как
Тогда
откуда max
<<max
,
а поскольку
то
доминирующим в этом случае будет расчет
по нормальным напряжениям и условие
прочности, например, для балки из
пластичного материала, работающей на
прямой изгиб, как и в случае чистого
изгиба будет иметь вид: