
- •Статика, общие сведения.
- •2 Аксиомы статики
- •3 Связи и их реакции Соединение тел между собой
- •Связь с помощью нитей (нить, цепь, трос)
- •Соединение тел с помощью шарниров.
- •Жесткая заделка.
- •Сложение плоской системы сходящихся сил. Геометрическое условие равновесия.
- •Условия равновесия системы сходящихся сил в векторной форме
- •Условия равновесия системы сходящихся сил в алгебраической форме
- •9Центр тяжести материального тела.
- •10Центр тяжести объема, плоской фигуры. Центр тяжести некоторых плоских фигур.
- •Центр тяжести дуги окружности
- •Центр тяжести площади сектора круга
- •11Определение положения центра тяжести плоской фигуры по центрам тяжести ее частей.
- •12Пара сил на плоскости. Эквивалентность пар сил.
- •13Сложение пар сил. Условие равновесия пар сил.
- •Условия равновесия пар сил.
- •14Момент силы относительно оси.
- •15Момент силы, относительно точки. Приведение силы к точке.
- •Трение скольжения
- •21 Реальные связи. Трение качения и его законы.
- •27 Аналитические формулы для моментов сил относительно координатных осей.
- •28 Основные понятия кинематики.
- •29 Способы задания движения точки.
- •30 Определение скорости и ускорения точки при естественном способе задания ее движения.
- •Разложение вектора ускорения по естественным координатным осям. Частные случаи при различных видах движения точки
- •31 Частные случаи движения точки.
- •В этом случае ,так как . Тогда полное ускорение по величине и направлению равно .
- •32 Поступательное движение твердого тела.
- •33 Вращательное движение твердого тела.
- •34 Частные случаи вращательного движения.
- •35 Скорости и ускорения различных точек вращающегося тела.
- •36 Сложное движение точки.
- •37 Плоскопараллельное движение тела.
- •38Определение скорости любой точки тела при плоскопараллельном движении.
- •39Теорема о сложении ускорений. (Теорема Кориолиса).
- •40Основные понятия и аксиомы динамики. Свободная и несвободная точка.
- •Аксиомы классической механики
- •41Силы инерции. Принцип Даламбера.
- •Напряженно-деформированное состояние детали. Метод сечений.
- •Напряженно-деформированное состояние детали. Напряжение - как мера внутренних сил
- •Напряженное состояние в точке.
- •Продольная и поперечная деформации. Закон Гука. Модуль упругости. Коэффициент Пуассона.
- •Частный случай плоского напряженного состояния - чистый сдвиг. Закон Гука при сдвиге.
- •Экспериментальные исследования механических свойств при проведении стандартных испытаний на растяжение.
- •Условие прочности, коэффициент запаса прочности, допускаемые напряжения. Общие сведения.
- •Расчеты на прочность стержней при растяжении-сжатии
- •Особенности расчета статически неопределимых стержневых систем.
- •Напряженно-деформированное состояние при прямом поперечном изгибе.
- •Касательные напряжения при изгибе.
- •Условие прочности при прямом поперечном изгибе.
- •Эпюры поперечных сил Правила знаков и построения эпюр.
- •Геометрические характеристики плоских сечений.
- •Расчеты на жесткость при изгибе.
- •Кручение вала (стержня) круглого поперечного сечения. Эпюры крутящих моментов.
- •Критическое напряжение. Пределы применимости формулы Эйлера.
- •Формулы Ясинского.
Продольная и поперечная деформации. Закон Гука. Модуль упругости. Коэффициент Пуассона.
Определим
упругие деформации стержня предполагая,
что изменение его длины при растяжении
,
называемое абсолютной
продольной деформацией
или удлинением, мало по сравнению с его
первоначальной длиной
.
Тогда относительная продольная деформация
будет равна
Учитывая, что согласно закону Гука для одноосного растяжения (сжатия)
,
где Е—;модуль
продольной упругости материала стержня,
а нормальные напряжения определяются
по формуле —
(в
нашем случае Nz=P),
для
абсолютной деформации получаем
|
(2) |
Произведение EF принято называть жесткостью поперечного сечения стержня при растяжении (сжатии), так как удлинение обратно пропорционально EF.
Рис.6.
Модели продольной и поперечной деформаций
Как показывают эксперименты, при растяжении стержня размеры его поперечного сечения уменьшаются (рис. 6), а при сжатии — увеличиваются. Это явление получило название эффекта Пуассона.
По
аналогии с продольной деформацией
изменение размеров поперечного сечения
(на
рис. 6
)
будем называть абсолютной
поперечной деформацией,
а
—
относительной поперечной деформацией.
Относительные продольная и поперечная
деформации, имеющие противоположные
знаки, связаны между собой коэффициентом
,
являющимся константой материала и
называемым коэффициентом поперечной
деформации или коэффициентом
Пуассона:
Как известно,
для изотропного материала
.
Формула (2) для удлинения стержня применима только в случае, когда по длине стержня ни жесткость поперечного сечения, ни продольная сила не изменяются (EF=const, Nz =const). Удлинение стержня со ступенчатым изменением EF и Nz (рис. 7) может быть определено как сумма удлинений ступеней, у которых EF и Nz постоянны:
(индекс k у модуля продольной упругости означает, что участки стержня могут быть изготовлены из различных материалов). В случае, когда Nz и EF меняются по длине стержня l непрерывно и их можно считать постоянными лишь в пределах ступеней длиной dz, обобщая формулу эту, получаем
В качестве тестов для практики расчетов определенных интегралов рекомендую воспользоваться системой входных тестов Т-5, указанных в ПРИЛОЖЕНИИ.
Рис.7.
Ступенчатый брус
С упругими продольными деформациями стержня при растяжении (сжатии) связаны продольные перемещения его сечений. На рис. 8 приведены три случая определения таких перемещений, откуда видно, что перемещения поперечных сечений численно равны удлинениям заштрихованных частей стержня:
перемещение свободного торцевого сечения 1—1 при неподвижном другом торцевом сечении (рис. 8, а) численно равно удлинению стержня;
перемещение промежуточного сечения 2—2 (рис. 8, б) численно равно удлинению части стержня, заключенной между данным сечением и сечением неподвижным;
взаимное перемещение сечений 3—3 и 4—4 (рис, 8, в) численно равно удлинению части стержня, заключенной между этими сечениями.