
- •Статика, общие сведения.
- •2 Аксиомы статики
- •3 Связи и их реакции Соединение тел между собой
- •Связь с помощью нитей (нить, цепь, трос)
- •Соединение тел с помощью шарниров.
- •Жесткая заделка.
- •Сложение плоской системы сходящихся сил. Геометрическое условие равновесия.
- •Условия равновесия системы сходящихся сил в векторной форме
- •Условия равновесия системы сходящихся сил в алгебраической форме
- •9Центр тяжести материального тела.
- •10Центр тяжести объема, плоской фигуры. Центр тяжести некоторых плоских фигур.
- •Центр тяжести дуги окружности
- •Центр тяжести площади сектора круга
- •11Определение положения центра тяжести плоской фигуры по центрам тяжести ее частей.
- •12Пара сил на плоскости. Эквивалентность пар сил.
- •13Сложение пар сил. Условие равновесия пар сил.
- •Условия равновесия пар сил.
- •14Момент силы относительно оси.
- •15Момент силы, относительно точки. Приведение силы к точке.
- •Трение скольжения
- •21 Реальные связи. Трение качения и его законы.
- •27 Аналитические формулы для моментов сил относительно координатных осей.
- •28 Основные понятия кинематики.
- •29 Способы задания движения точки.
- •30 Определение скорости и ускорения точки при естественном способе задания ее движения.
- •Разложение вектора ускорения по естественным координатным осям. Частные случаи при различных видах движения точки
- •31 Частные случаи движения точки.
- •В этом случае ,так как . Тогда полное ускорение по величине и направлению равно .
- •32 Поступательное движение твердого тела.
- •33 Вращательное движение твердого тела.
- •34 Частные случаи вращательного движения.
- •35 Скорости и ускорения различных точек вращающегося тела.
- •36 Сложное движение точки.
- •37 Плоскопараллельное движение тела.
- •38Определение скорости любой точки тела при плоскопараллельном движении.
- •39Теорема о сложении ускорений. (Теорема Кориолиса).
- •40Основные понятия и аксиомы динамики. Свободная и несвободная точка.
- •Аксиомы классической механики
- •41Силы инерции. Принцип Даламбера.
- •Напряженно-деформированное состояние детали. Метод сечений.
- •Напряженно-деформированное состояние детали. Напряжение - как мера внутренних сил
- •Напряженное состояние в точке.
- •Продольная и поперечная деформации. Закон Гука. Модуль упругости. Коэффициент Пуассона.
- •Частный случай плоского напряженного состояния - чистый сдвиг. Закон Гука при сдвиге.
- •Экспериментальные исследования механических свойств при проведении стандартных испытаний на растяжение.
- •Условие прочности, коэффициент запаса прочности, допускаемые напряжения. Общие сведения.
- •Расчеты на прочность стержней при растяжении-сжатии
- •Особенности расчета статически неопределимых стержневых систем.
- •Напряженно-деформированное состояние при прямом поперечном изгибе.
- •Касательные напряжения при изгибе.
- •Условие прочности при прямом поперечном изгибе.
- •Эпюры поперечных сил Правила знаков и построения эпюр.
- •Геометрические характеристики плоских сечений.
- •Расчеты на жесткость при изгибе.
- •Кручение вала (стержня) круглого поперечного сечения. Эпюры крутящих моментов.
- •Критическое напряжение. Пределы применимости формулы Эйлера.
- •Формулы Ясинского.
40Основные понятия и аксиомы динамики. Свободная и несвободная точка.
В динамике изучаются механические движения материальных объектов под действием сил. Простейшим материальным объектом является материальная точка.
Материальная точка это модель материального тела любой формы, размерами которого можно пренебречь и принять за геометрическую точку, имеющую определенную массу.
Более сложные материальные объекты – механические системы и твердые тела, состоят из набора материальных точек.
Движение материальных объектов всегда происходит в пространстве относительно определенной системы отсчета и во времени. Пространство считается трехмерным эвклидовым пространством, свойства которого не зависят от движущихся в нем материальных объектов.
Время в классической механике не связано с пространством и движением материальных объектов. Во всех системах отсчета движущихся друг относительно друга оно протекает одинаково.
Аксиомы классической механики
Первая аксиома или закон инерции. Материальная точка, на которую не действуют силы или действует равновесная система сил, обладает способностью сохранять свое состояние покоя или равномерного и прямолинейного движения относительно инерциальной системы отсчета.
Материальная точка, на которую действует равновесная система сил, называется изолированной материальной точкой.
Равномерное и прямолинейное движение точки называется движением по инерции.
Вторая аксиома или основной закон динамики. Ускорение материальной точки относительно инерционной системы отсчета пропорционально приложенной к точке силе и направлено по этой силе.
Положительный коэффициент пропорциональности m, характеризует инертные свойства материальной точки и называется массой точки.
Рис. 1-1
Масса не зависит от характеристик движения точки и от природы сил. Масса считается постоянной величиной и зависит только от самой материальной точки.
Сила, приложенная к материальной точке, всегда имеет материальный источник в виде других материальных тел, которые действуют на точку путем контакта при непосредственном соприкосновении с ней или на расстоянии через посредство силовых полей.
Т
ретья
аксиома или закон о равенстве сил
действия и противодействия. Силы
взаимодействия двух материальных точек
равны по величине и противоположны по
направлению.
Рис. 1-2
Четвертая аксиома или закон независимого действия сил. При одновременном действии на материальную точку нескольких сил ускорение точки относительно инерционной системы отсчета от действия каждой отдельной силы не зависит от наличия других, приложенных к точке, сил и полное ускорение равно векторной сумме ускорений от действия отдельных сил.
Аксиомы классической механики хорошо согласуются с результатами опытов.
41Силы инерции. Принцип Даламбера.
Уравнение движения материальной точки относительно инерциальной системы отсчета под действием приложенных активных сил и сил реакции связей имеет вид:
,
- равнодействующая активных сил, - равнодействующая сил реакции связей.
Силой
инерции материальной
точки называют произведение массы точки
на вектор ускорения, взятое с обратным
знаком, т.е.
.
Если
использовать понятие силы инерции, то
основной закон динамики принимает
вид:
Принцип Даламбера. При движении материальной точки активные силы и силы реакции связей вместе с силой инерции точки образуют равновесную систему сил.
Принцип Даламбера называют еще методом кинетостатики. Задачи динамики с помощью этого метода сводятся к задачам статики.
42Работа постоянной силы при прямолинейном перемещении.
43Работа равнодействующей силы.
44Работа переменной силы на криволинейном пути.
45Мощность. Механический КПД.
Мощностью силы называется величина, определяющая работу, совершаемую силой в единицу времени. В общем случае мощность равна первой производной по времени от работы.
,
Мощность равна скалярному произведению силы на скорость.
Единицей
измерения мощности в СИ является –
В технике
за единицу силы принимается
.
46Работа сил на наклонной плоскости. КПД наклонной плоскости.
47Работа и мощность при вращательном движении сил.
48Импульс силы. Количество движения.
49.Теорема об изменении количества движения точки
50 Теорема об изменении кинетической энергии точки.
Основное уравнение динамики вращающегося тела.
Кинетическая энергия тела.
Основные понятия в курсе «Сопротивление материалов».
Прочность – это способность конструкции выдерживать заданную нагрузку, не разрушаясь.
Жесткость – способность конструкции к деформированию в соответствие с заданным нормативным регламентом.
Деформирование – свойство конструкции изменять свои геометрические размеры и форму под действием внешних сил
Устойчивость – свойство конструкции сохранять при действии внешних сил заданную форму равновесия.
Надежность – свойство конструкции выполнять заданные функции, сохраняя свои эксплуатационные показатели в определенных нормативных пределах в течение требуемого промежутка времени.
Ресурс – допустимый срок службы изделия. Указывается в виде общего времени наработки или числа циклов нагружения конструкции.
Отказ – нарушение работоспособности конструкции.
Опираясь на вышесказанное, можно дать определение прочностной надежности.
Прочностной надежностью называется отсутствие отказов, связанных с разрушением или недопустимыми деформациями элементов конструкции.
Упругостью называется свойство тела восстанавливать свою форму после снятия внешних нагрузок.
Пластичностью называется свойство тела сохранять после прекращения действия нагрузки, или частично полученную при нагружении, деформацию.
Ползучестью называется свойство тела увеличивать деформацию при постоянных внешних нагрузках.