Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
МТО по билетам 1-15.doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
2.89 Mб
Скачать

3. Расшифровать

ВЧ45-5-высокопрочный чугун, минимальный предел прочности при растяжении σв,,45кгс/мм2,относительное удлинение при растяжении 5(%).

3Х2В8-инструм.,штамповая,низкоугл.,0.3%С,

30ХГС-кострук.,легир.,улуч.,0,3%С, менее 1%Cr.Mn,Si.

4.Для изготовления деталей подшипников качения (роликов, шариков) выбрана сталь шх9. Укажите состав, назначте режим термической обработки. Опишите фазовые превращения, полученную структуру и свойства.

ШХ9 – Сталь конструк., шарикоподшипн., заэтектоидная. Угл=1%, Cr=0,9%

Для получения большой твердости, прочности используем закалку и низкий отпуск

П+Ц2----нагрев выше А1 на 30-50°С----А+Ц2---охлаждение в масле----Мзакалки-----низкий отпуск 160-250°С----Мотпущенный

Билет8(1)

1.Превращение перлита в аустенит

При нагреве стали выше критических точек с образованием аустенита исходной структурой чаще всего является смесь феррита и цементита — перлит. Превращение перлита в аустенит в точном соответствии с диаграммой «железо-углерод» происходит лишь при очень медленном нагреве. В реальных условиях нагрева при термообработке превращение перлита в аустенит запаздывает и имеет место перегрев. Скорость превращения зависит от степени перегрева. Чем выше температура, тем больше степень перегрева и тем быстрее идет превращение. Кинетику превращения можно проследить на диаграмме изотермического превращения перлита в твердый раствор аустенит эвтектоидной стали (рис. 8.2).

При достаточно высокой температуре из-за большой подвижности атомов превращение протекает практически мгновенно, поэтому кривые начала и конца превращения сливаются и попадают на ось ординат. При очень малом перегреве над А1 превращение протекает очень вяло и поэтому превращение может протекать практически бесконечно. В этом случае кривые начала и конца превращения также сливаются и асимптотически приближаются к линии А1. Совпадение кривых начала и конца превращения в одной точке соответствует равновесному превращению по диаграмме железо-углерод.

Рис. 8.2. Диаграмма изотермического превращения перлита в аустенит эвтектоидной стали: а', а''— точки начала превращения со скоростями v1, v2; b', b'' — точки конца превращения со cкороcтями v1, v2 (v1 >v1)

Зародыши новой фазы – аустенита – образуются на межфазных поверхностях раздела феррита и цементита. Переход перлита в аустенит состоит из двух элементарных процессов: полиморфного превращения Fea ® Feg и растворения в g -железе углерода цементита. Растворение цементита запаздывает по сравнению с полиморфным превращением. Поэтому после превращения феррита в аустенит необходимо дополнительное время для устранения неоднородности аустенита — период гомогенизации аустенита.

В доэвтектоидных сталях выше А1 структура состоит из аустенита и феррита, а в заэвтектоидных — из аустенита и цементита. По мере нагрева до АC3 (Аcm) происходит постепенное растворение свободного феррита или цементита в аустените. Однофазную структуру аустенита доэвтектоидные и заэвтектоидные стали приобретают только после нагрева выше АC3 (Аcm).

Размер аустенитного зерна – важнейшая структурная характеристика нагретой стали. От размера зерна аустенита зависит поведение стали в различных процессах термомеханической обработки и механические свойства изделия.

Особенно чувствительна к размеру аустенитного зерна ударная вязкость, которая падает заметно с укрупнением зерна.