
- •1. Влияние пластической деформации на структуру и свойства металла.
- •2.Мартенситное превращение
- •3.Расшифровать
- •1.Процесс первичной кристаллизации, формирование структуры. Модифицирование.
- •2.Способы закалки
- •3.Расшифровать
- •4.Валик из стали 40 работает в слабонагруженных условиях. Назначьте оптимальную термическую обработку. Опишите фазовые и структурные превращения, свойства после термической обработки.
- •1. Строение металлов и сплавов.
- •2.Критические точки стали. Фазовые превращения при нагреве.
- •3. Расшифровать
- •4.Назначить режим термической обработки для стали 35, если требуется комплекс пластичности и прочности. Описать фазовые превращения, структуру и свойства.
- •1. Процессы, происходящие при нагреве деформированного металла.
- •2. Закалка стали: цель, сущность, назначение
- •3. Расшифровать
- •4.Режущий инструмент изготавливается из стали у12а. Расшифровать марку, назначить режим термической обработки, описать фазовые превращения, свойства и структуру.
- •1 Общие закономерности процессов, протекающих при хто, сущность, назначение
- •2. Влияние легирующих элементов на мартенситное превращение.
- •3. Расшифровать
- •4.Изделия из стали 45. Необходимо получить хорошую обрабатываемость резанием. Назначьте необходимую термическую обработку. Опишите фазовые превращения, полученную структуру и свойства.
- •2. Рост аустенитного зерна при нагреве (влияние л.Э. На рост зерна аустенита)
- •3. Расшифровать
- •4.Назначте режим термической обработки напильников из стали у13. Укажите состав, назначте режим термической обработки. Опишите фазовые превращения, полученную структуру и свойства.
- •1.Строение металлов и сплавов (механическая смесь, химическое соединение, твердые растворы).
- •2. Нормализация, цель, сущность; структура и свойства после т/о.
- •3. Расшифровать
- •4.Для изготовления деталей подшипников качения (роликов, шариков) выбрана сталь шх9. Укажите состав, назначте режим термической обработки. Опишите фазовые превращения, полученную структуру и свойства.
- •1.Превращение перлита в аустенит
- •2. Аллотропия железа (вычертить кривую охлаждения железа)
- •3. Расшифровать
- •3.Расшифровать
- •1.Способы закалки (начертить с-образную диаграмму с кривыми охлаждения)
- •2. Строение стального слитка (по д.К. Чернову)
- •3 .Расшифровать
- •1.Распад аустенита
- •2. Энергетические условия процесса кристаллизации (график изменения свободной энергии в зависимости от температуры)
- •3. Расшифровать
- •4.Назначте режим термической обработки резьбовых калибров из стали у10а. Опишите сущность происходящих превращений, микроструктуру и свойства после термической обработки.
- •1.Распад аустенита
- •2. Энергетические условия процесса кристаллизации (график изменения свободной энергии в зависимости от температуры)
- •3. Расшифровать
- •4.Назначте режим термической обработки резьбовых калибров из стали у10. Опишите сущность происходящих превращений, микроструктуру и свойства после термической обработки.
- •1.Влияние пластической деформации на структуру и свойства металла (схемы микроструктур)
- •2. Отжиг II рода, цель, сущность: структура и свойства.
- •3.Расшифровать:
- •1. Влияние легирующих элементов на кинетику распада аустенита (схема диаграмм изотермического распада аустенита).
- •2.Отпуск стали, цель, сущность, температурные режимы отпуска.
- •3.Расшифровать:
- •4.Валик из стали 40 работает в слабонагруженных условиях. Назначьте оптимальную термическую обработку. Опишите фазовые и структурные превращения, свойства после термической обработки.
- •1.Отжиг I рода: цель, сущность, назначение.
- •2.Превращение аустенита в до и заэвтектоидных сталях.
- •3.Расшифровать:
- •4.Шпиндель для станков изготавливается из стали мст6 (0,4%с). Необходимая твердость hrc30-32. Назначить режим термической обработки, описать фазовые и структурные превращения, свойства.
- •1.Разновидности термомеханической обработки (привести схемы)
- •2.Низкий, средний и высокий отпуск. Назначение и выбор режима отпуска.
- •3.Расшифровать:
- •4.Назначте режим термической обработки напильников из стали у13. Укажите состав, назначте режим термической обработки. Опишите фазовые превращения, полученную структуру и свойства.
3. Расшифровать
ХВ5-инструм.,легир.,1%С,менее 1% Cr,5% W .
Бст6- сталь обыкн. качества,
Р9М4К8-инструм.,быстрореж.,1%С, менее 1%С,4% Mo,8%Co.
4.Изделия из стали 45. Необходимо получить хорошую обрабатываемость резанием. Назначьте необходимую термическую обработку. Опишите фазовые превращения, полученную структуру и свойства.
Ст40- Сталь конструкционная углеродистая качественная, доэвтектоидная. Угл=0,45% кремн=0,25% марганец=0,5-0,8%
Для получения хорошей обрабатываемости резанием, нужно провести полный отжиг.
Ф+П----нагрев выше Ас3 на 30-50 гр=920гр-----А-----охлажд вместе с печью------(Ф+П)?
Билет7(1)
1.Четыре
основных превращения в стали при
термической обработке.Любая
разновидность термической обработки
состоит из комбинации четырех основных
превращений, в основе которых лежат
стремления системы к минимуму свободной
энергии (рис 12.2).
Рис. 12.2. Зависимость свободной энергии структурных составляющих сталей от температуры: аустенита (FA), мартенсита (FM), перлита (FП)
1. Превращение
перлита в аустенит
,
происходит при нагреве выше критической
температуры А1,
минимальной
свободной энергией обладает аустенит.
2. Превращение
аустенита в перлит
,
происходит при охлаждении ниже А1,
минимальной свободной энергией обладает
перлит:
3. Превращение
аустенита в мартенсит
,
происходит при быстром охлаждении ниже
температуры нестабильного равновесия
4. Превращение
мартенсита в перлит
;
– происходит при любых температурах,
т.к. свободная энергия мартенсита больше,
чем свободная энергия перлита.
2. Рост аустенитного зерна при нагреве (влияние л.Э. На рост зерна аустенита)
Образующиеся при нагреве выше критической точки Ас1 из зерен перли-
та зерна новой структуры - аустенита - получаются мелкими и называются начальными зернами аустенита. При повышении температуры происходит рост зерен и тем в большей степени, чем выше температура нагрева. Но склонность к росту зерен с повышением температуры у сталей различная. Стали, раскисленные в процессе выплавки кремнием (ферросилицием) и марганцем (ферромарганцем), обладают склонностью к непрерывному росту зерна с повышением температуры. Такие стали называют наследственно крупнозернистыми .Стали, раскисленные в процессе выплавки дополнительно алюминием, ванадием или титаном, не обнаруживают роста зерна при нагреве до значительно более высоких температур (900-950° С). Такие стали называют наследственно мелкозернистыми. Под наследственной зернистостью подразумевается склонность аустенитного зерна к росту при повышении температуры.
При нагреве наследственно мелкозернистых сталей выше определенной
температуры наблюдается резкий рост зерна, и размер зерна получается даже
большим, чем у наследственно крупнозернистых сталей, нагретых до той же
температуры. Такое поведение наследственно мелкозернистых сталей при на-
греве объясняется тем, что присутствующий в них алюминий образует окислы Al2O3 и нитриды A1N, а ванадий и титан, кроме окислов V2O5, TiO2 и нитридов VN, TiN, образуют еще и карбиды VC, TiC. Все эти соединения в виде мелких включений располагаются по границам зерен и механически препятствуют их росту при нагреве. При определенной температуре нагрева происходит растворение включений в аустените, препятствия, тормозившие рост зерен, устраняются, и зерна начинают расти очень быстро.
От величины зерна аустенита, образующегося при нагреве, зависит величина зерна продуктов распада аустенита. Если зерно аустенита мелкое, то и
продукты распада аустенита получаются мелкими. Зерно стали, которое наблюдается при данной температуре в микроскоп, называется действительным. От размера действительного зерна зависят механические свойства стали, главным образом вязкость, значительно понижающаяся с увеличением размера зерна. Размер наследственного зерна оказывает влияние на технологически свойства стали. Если, например, сталь наследственно мелкозернистая, следовательно, ее можно нагревать до высокой температуры и выдерживать длительное время, не опасаясь роста зерна.
Легирующие эл-ты в большинстве случаев раств-ся в аустените, образуя тверд.растворы замещения. Легир.стали требуют более высоких темп-р нагрева и более длит-ой выдержке для получения однородного аустенита, в кот. Растворяются карбиды легирующих эл-в.Ванадий, титан, молибден, вольфрам, алюминий — уменьшают склонность к росту зерна аустенита, а марганец и фосфор — увеличивают ее.