
- •160001, Г. Вологда, ул. Челюскинцев, 3.
- •Предисловие
- •Введение
- •Раздел 1. Теория информации
- •Глава 1. Исходные понятия информатики
- •1.1. Начальные определения
- •1.2. Формы представления информации
- •1.3. Преобразование сообщений
- •Контрольные вопросы и задания
- •Глава 2. Понятие информации в теории Шеннона
- •2.1. Понятие энтропии
- •2.1.1. Энтропия как мера неопределенности
- •2.1.2. Свойства энтропии
- •2.1.3. Условная энтропия
- •2.2. Энтропия и информация
- •2.3. Информация и алфавит
- •Контрольные вопросы и задания
- •Глава 3. Кодирование символьной информации
- •3.1. Постановка задачи кодирования, Первая теорема Шеннона
- •3.2. Способы построения двоичных кодов
- •3.2.1. Алфавитное неравномерное двоичное кодирование сигналами равной длительности. Префиксные коды
- •3.2.2. Равномерное алфавитное двоичное кодирование. Байтовый код
- •3.2.3. Алфавитное кодирование с неравной длительностью элементарных сигналов. Код Морзе
- •3.2.4. Блочное двоичное кодирование
- •Контрольные вопросы и задания
- •Глава 4. Представление и обработка чисел в компьютере
- •4.1. Системы счисления
- •4.2. Представление чисел в различных системах счисления
- •4.2.1. Перевод целых чисел из одной системы счисления в другую
- •4.2.2. Перевод дробных чисел из одной системы счисления в другую
- •4.2.3. Понятие экономичности системы счисления
- •4.2.4. Перевод чисел между системами счисления 2 ↔ 8 ↔ 16
- •4.2.5. Преобразование нормализованных чисел
- •4.3. Кодирование чисел в компьютере и действия над ними
- •4.3.1. Кодирование и обработка в компьютере целых чисел без знака
- •4.3.2. Кодирование и обработка в компьютере целых чисел со знаком
- •4.3.3. Кодирование и обработка в компьютере вещественных чисел
- •Контрольные вопросы и задания
- •Глава 5. Передача информации
- •5.1. Общая схема передачи информации в линии связи
- •5.2. Характеристики канала связи
- •5.3. Влияние шумов на пропускную способность канала
- •5.4. Обеспечение надежности передачи и хранения информации
- •5.4.1. Постановка задачи
- •5.4.2. Коды, обнаруживающие ошибку
- •5.4.3. Коды, исправляющие одиночную ошибку
- •5.5. Способы передачи информации в компьютерных линиях связи
- •5.5.1. Канал параллельной передачи
- •5.5.2. Последовательная передача данных
- •5.5.3. Связь компьютеров по телефонным линиям
- •Контрольные вопросы и задания
- •Глава 6. Хранение информации
- •6.1. Классификация данных. Проблемы представления данных
- •6.2. Представление элементарных данных в озу
- •6.3. Структуры данных и их представление в озу
- •6.3.1. Классификация и примеры структур данных
- •6.3.2. Понятие логической записи
- •6.3.3. Организация структур данных в озу
- •6.4. Представление данных на внешних носителях
- •6.4.1. Иерархия структур данных на внешних носителях
- •6.4.2. Особенности устройств хранения информации
- •Контрольные вопросы и задания
- •Раздел 2. Алгоритмы. Модели. Системы
- •Глава 7. Элементы теории алгоритмов
- •7.1. Нестрогое определение алгоритма
- •7.2. Рекурсивные функции
- •7.3. Алгоритм как абстрактная машина
- •7.3.1. Общие подходы
- •7.3.2. Алгоритмическая машина Поста
- •7.3.3. Алгоритмическая машина Тьюринга
- •7.4. Нормальные алгоритмы Маркова
- •7.5. Сопоставление алгоритмических моделей
- •7.6. Проблема алгоритмической разрешимости
- •7.7. Сложность алгоритма
- •Контрольные вопросы и задания
- •Глава 8. Формализация представления алгоритмов
- •8.1. Формальные языки
- •8.1.1. Формальная грамматика
- •8.1.2. Способы описания формальных языков
- •8.2. Способы представления алгоритмов
- •8.2.1. Исполнитель алгоритма
- •8.2.2. Строчная словесная запись алгоритма
- •8.2.3. Графическая форма записи
- •8.2.4. Классификация способов представления алгоритмов
- •8.3. Структурная теорема
- •Контрольные вопросы и задания
- •Глава 9. Представление о конечном автомате
- •9.1. Общие подходы к описанию устройств, предназначенных для обработки дискретной информации
- •9.2. Дискретные устройства без памяти
- •9.3. Конечные автоматы
- •9.3.1. Способы задания конечного автомата
- •9.3.2. Схемы из логических элементов и задержек
- •9.3.3. Эквивалентные автоматы
- •Контрольные вопросы и задания
- •Глава 10. Модели и системы
- •10.1. Понятие модели
- •10.1.1. Общая идея моделирования
- •10.1.2. Классификация моделей
- •Модели структурные и функциональные
- •Модели натурные и информационные
- •Модели проверяемые и непроверяемые
- •Модели по назначению
- •10.1.3. Понятие математической модели
- •10.2. Понятие системы
- •10.2.1. Определение объекта
- •10.2.2. Определение системы
- •10.2.3. Формальная система
- •10.2.4. Значение формализации
- •10.3. Этапы решения задачи посредством компьютера
- •10.4. Об объектном подходе в прикладной информатике
- •Контрольные вопросы и задания
- •Заключение
- •Приложение а. Элементы теории вероятностей
- •А.1. Понятие вероятности
- •А.2. Сложение и умножение вероятностей
- •A.3. Условная вероятность
- •Контрольные вопросы и задания
- •Приложение б. Некоторые соотношения логики
- •Глоссарий
- •Список литературы
- •Содержание
- •Глава 4. Представление и обработка чисел в компьютере 45
- •Глава 5. Передача информации 69
- •Глава 6. Хранение информации 83
- •Раздел 2. Алгоритмы. Модели. Системы 98
- •Глава 7. Элементы теории алгоритмов 99
- •Глава 8. Формализация представления алгоритмов 120
- •Глава 9. Представление о конечном автомате 134
- •Глава 10. Модели и системы 147
2.1.2. Свойства энтропии
1) Как следует из
(2.4), Н = 0
только в двух случаях: (а) какая-либо из
p(Aj)
=
1; однако,
при этом из (А.7) следует, что все остальные
р(Аi)
=
0 (i≠j),
т.е. реализуется ситуация, когда один
из исходов является достоверным
(и общий итог
опыта перестает быть случайным); (b) все
р(Аi)
= 0, т.е. никакие
из рассматриваемых исходов опыта
невозможны, поскольку нетрудно показать,
что
(р ∙
log
р)
= 0 во всех остальных случаях, очевидно,
что Н >
0.
2) Очевидным следствием (2.1) будет утверждение, что для двух независимых опытов α и β
Энтропия сложного опыта, состоящего из нескольких независимых, равна сумме энтропии отдельных опытов.
В справедливости (2.5) можно убедиться непосредственно: Пусть опыт α имеет п исходов А1, А2, … Ап, которые реализуются с вероятностями р(А1), р(А2), ... р(Ап), а событие β - т исходов B1, В2, ... Вт с вероятностями р(В1), р(В2), ... р(Вт). Сложный опыт α ^ β имеет п∙т исходов типа AiBj (i = 1... n, j = 1... т). Следовательно:
Поскольку α и β - независимы, то независимыми окажутся события в любой паре Ai ^ Bj. Тогда, согласно (А.9),
В слагаемых произведено изменение порядка суммирования в соответствии со значениями индексов. Далее, по условию нормировки (А.7):
а из (2.4)
окончательно имеем:
что и требовалось доказать.
Теперь рассмотрим ситуацию, когда имеются два опыта с одинаковым числом исходов п, но в одном случае они равновероятны, а в другом - нет. Каково соотношение энтропии опытов? Примем без доказательства* следующее утверждение:
* При необходимости доказательство можно найти, например, в книгах: А.М. и И.М. Яглом [49, с.73-75]; Л. Бриллюэн [7, с.34-36].
При прочих равных условиях наибольшую энтропию имеет опыт с равновероятными исходами.
Другими словами, энтропия максимальна в опытах, где все исходы равновероятны. Здесь усматривается аналогия (имеющая глубинную первооснову!) с понятием энтропии, используемой в физике. Впервые понятие энтропии было введено в 1865 г. немецким физиком Рудольфом Клаузиусом как функции состояния термодинамической системы, определяющей направленность самопроизвольных процессов в системе. Клаузиус сформулировал II начало термодинамики. В частности, он показал, что энтропия достигает максимума в состоянии равновесия системы. Позднее (в 1872 г.) Людвиг Больцман, развивая статистическую теорию, связал энтропию системы с вероятностью ее состояния, дал статистическое (вероятностное) толкование II-му началу термодинамики и, в частности, показал, что вероятность максимальна у полностью разупорядоченной (равновесной) системы, причем, энтропия и термодинамическая вероятность оказались связанными логарифмической зависимостью. Другими словами, в физике энтропия оказывается мерой беспорядка в системе. При этом беспорядок понимается как отсутствие знания о характеристиках объекта (например, координат и скорости молекулы); с ростом энтропии уменьшается порядок в системе, т.е. наши знания о ней. Сходство понятий и соотношений между ними в теории информации и статистической термодинамике, как оказалось позднее, совершенно не случайно*.
* Подробнее об этом можно причитать в книгах Л.Бриллюэна [7] и Р.Л.Стратоновича [39].
Кстати, результат, полученный в рассмотренном выше примере 2.1, иллюстрирует справедливость формулы (2.7).