
- •160001, Г. Вологда, ул. Челюскинцев, 3.
- •Предисловие
- •Введение
- •Раздел 1. Теория информации
- •Глава 1. Исходные понятия информатики
- •1.1. Начальные определения
- •1.2. Формы представления информации
- •1.3. Преобразование сообщений
- •Контрольные вопросы и задания
- •Глава 2. Понятие информации в теории Шеннона
- •2.1. Понятие энтропии
- •2.1.1. Энтропия как мера неопределенности
- •2.1.2. Свойства энтропии
- •2.1.3. Условная энтропия
- •2.2. Энтропия и информация
- •2.3. Информация и алфавит
- •Контрольные вопросы и задания
- •Глава 3. Кодирование символьной информации
- •3.1. Постановка задачи кодирования, Первая теорема Шеннона
- •3.2. Способы построения двоичных кодов
- •3.2.1. Алфавитное неравномерное двоичное кодирование сигналами равной длительности. Префиксные коды
- •3.2.2. Равномерное алфавитное двоичное кодирование. Байтовый код
- •3.2.3. Алфавитное кодирование с неравной длительностью элементарных сигналов. Код Морзе
- •3.2.4. Блочное двоичное кодирование
- •Контрольные вопросы и задания
- •Глава 4. Представление и обработка чисел в компьютере
- •4.1. Системы счисления
- •4.2. Представление чисел в различных системах счисления
- •4.2.1. Перевод целых чисел из одной системы счисления в другую
- •4.2.2. Перевод дробных чисел из одной системы счисления в другую
- •4.2.3. Понятие экономичности системы счисления
- •4.2.4. Перевод чисел между системами счисления 2 ↔ 8 ↔ 16
- •4.2.5. Преобразование нормализованных чисел
- •4.3. Кодирование чисел в компьютере и действия над ними
- •4.3.1. Кодирование и обработка в компьютере целых чисел без знака
- •4.3.2. Кодирование и обработка в компьютере целых чисел со знаком
- •4.3.3. Кодирование и обработка в компьютере вещественных чисел
- •Контрольные вопросы и задания
- •Глава 5. Передача информации
- •5.1. Общая схема передачи информации в линии связи
- •5.2. Характеристики канала связи
- •5.3. Влияние шумов на пропускную способность канала
- •5.4. Обеспечение надежности передачи и хранения информации
- •5.4.1. Постановка задачи
- •5.4.2. Коды, обнаруживающие ошибку
- •5.4.3. Коды, исправляющие одиночную ошибку
- •5.5. Способы передачи информации в компьютерных линиях связи
- •5.5.1. Канал параллельной передачи
- •5.5.2. Последовательная передача данных
- •5.5.3. Связь компьютеров по телефонным линиям
- •Контрольные вопросы и задания
- •Глава 6. Хранение информации
- •6.1. Классификация данных. Проблемы представления данных
- •6.2. Представление элементарных данных в озу
- •6.3. Структуры данных и их представление в озу
- •6.3.1. Классификация и примеры структур данных
- •6.3.2. Понятие логической записи
- •6.3.3. Организация структур данных в озу
- •6.4. Представление данных на внешних носителях
- •6.4.1. Иерархия структур данных на внешних носителях
- •6.4.2. Особенности устройств хранения информации
- •Контрольные вопросы и задания
- •Раздел 2. Алгоритмы. Модели. Системы
- •Глава 7. Элементы теории алгоритмов
- •7.1. Нестрогое определение алгоритма
- •7.2. Рекурсивные функции
- •7.3. Алгоритм как абстрактная машина
- •7.3.1. Общие подходы
- •7.3.2. Алгоритмическая машина Поста
- •7.3.3. Алгоритмическая машина Тьюринга
- •7.4. Нормальные алгоритмы Маркова
- •7.5. Сопоставление алгоритмических моделей
- •7.6. Проблема алгоритмической разрешимости
- •7.7. Сложность алгоритма
- •Контрольные вопросы и задания
- •Глава 8. Формализация представления алгоритмов
- •8.1. Формальные языки
- •8.1.1. Формальная грамматика
- •8.1.2. Способы описания формальных языков
- •8.2. Способы представления алгоритмов
- •8.2.1. Исполнитель алгоритма
- •8.2.2. Строчная словесная запись алгоритма
- •8.2.3. Графическая форма записи
- •8.2.4. Классификация способов представления алгоритмов
- •8.3. Структурная теорема
- •Контрольные вопросы и задания
- •Глава 9. Представление о конечном автомате
- •9.1. Общие подходы к описанию устройств, предназначенных для обработки дискретной информации
- •9.2. Дискретные устройства без памяти
- •9.3. Конечные автоматы
- •9.3.1. Способы задания конечного автомата
- •9.3.2. Схемы из логических элементов и задержек
- •9.3.3. Эквивалентные автоматы
- •Контрольные вопросы и задания
- •Глава 10. Модели и системы
- •10.1. Понятие модели
- •10.1.1. Общая идея моделирования
- •10.1.2. Классификация моделей
- •Модели структурные и функциональные
- •Модели натурные и информационные
- •Модели проверяемые и непроверяемые
- •Модели по назначению
- •10.1.3. Понятие математической модели
- •10.2. Понятие системы
- •10.2.1. Определение объекта
- •10.2.2. Определение системы
- •10.2.3. Формальная система
- •10.2.4. Значение формализации
- •10.3. Этапы решения задачи посредством компьютера
- •10.4. Об объектном подходе в прикладной информатике
- •Контрольные вопросы и задания
- •Заключение
- •Приложение а. Элементы теории вероятностей
- •А.1. Понятие вероятности
- •А.2. Сложение и умножение вероятностей
- •A.3. Условная вероятность
- •Контрольные вопросы и задания
- •Приложение б. Некоторые соотношения логики
- •Глоссарий
- •Список литературы
- •Содержание
- •Глава 4. Представление и обработка чисел в компьютере 45
- •Глава 5. Передача информации 69
- •Глава 6. Хранение информации 83
- •Раздел 2. Алгоритмы. Модели. Системы 98
- •Глава 7. Элементы теории алгоритмов 99
- •Глава 8. Формализация представления алгоритмов 120
- •Глава 9. Представление о конечном автомате 134
- •Глава 10. Модели и системы 147
Модели проверяемые и непроверяемые
Ранее шла речь о возможности построения множества моделей для одного и того же прототипа. Всегда ли возможно соотнесения модели с прототипом и качества моделей между собой?
Проверяемыми являются те модели, у которых результат их использования может быть соотнесен (сравнен) с прототипом.
Например, построив математическую модель падения тела на землю и рассчитав в соответствии с ней время полета, можно провести эксперимент (или наблюдение) и сравнить с тем, что есть «на самом деле». Для таких моделей можно определить понятие точности как количественной меры, отражающей соотношение результатов моделирования и реальности. Ясно, что чем ближе будут данные, полученные в результате моделирования, к данным реального явления (процесса), тем точнее модель. Именно точность соответствия прототипу позволяют сопоставлять проверяемые модели между собой.
Непроверяемые модели сопоставить с реальным прототипом нельзя вообще или отсутствуют объективные (т.е. общие для всех) критерии такого сопоставления. Примером модели, которую невозможно соотнести с прототипом, является религия, если рассматривать ее как модель происхождения и устройства мира. Моделями с отсутствием объективных критериев сопоставления являются: характеристика человека как модель его качеств; трактовка замысла художника как модель произведения; описание увиденного; суждение о чем-либо и пр. Для одного прототипа допустимо построение множества непроверяемых моделей (например, множество религий или множество характеристик человека), однако, невозможность их сравнения с оригиналом не позволяет также сравнивать их между собой и отдавать какой-либо из них предпочтение. Подобные модели должны приниматься как равноправные.
Модели по назначению
Различным может быть назначение моделей; можно выделить модели:
иллюстрационно-описательные - для демонстрации строения или функционирования прототипа;
имитационные - для исследования свойств прототипа и процессов в нем;
управленческие - для осуществления управления прототипом.
В связи с приведенной классификацией возникает вопрос: к какому типу моделей следует отнести литературное произведение, картину художника, музыкальное произведение, макет нового здания или новую математическую теорию? Ответ зависит от того, имеется ли прототип у продукта творчества. Если этот продукт является вымыслом автора и прототип у него отсутствует, то такой продукт нельзя считать моделью, поскольку по определению модель - есть упрощение каких-то существующих реалий. При дальнейшем анализе художественного произведения (например, критиками или изучающими его студентами) может строиться его модель, однако, само произведение моделью не является. Моделью событий (исторических, политических, уголовных и пр.) может служить только описание фактов без домыслов автора (именно такой подход принят в юриспруденции). Другими словами, летопись - это модель событий, а их художественное представление - нет (например, описание Бородинской битвы у Лермонтова или Толстого). Точно также нельзя называть моделями монтажную схему нового компьютера, блок-схему разрабатываемой программы или план создаваемого литературного или научного произведения - правильнее было бы использовать какой-то иной термин, например, проект. Если же продукт творчества обладает прототипом (например, это портрет или пейзаж с натуры), то он может считаться моделью, причем, это могут быть как натурные, так и информационные модели.
Несколько слов относительно термина «математическая модель», который в настоящее время используется не только в информатике, но и во множестве других научных и прикладных дисциплин. В целом, математику следует считать наукой самодостаточной, поскольку ее понятия и теории строятся, в отличие от естественных наук, из исходной аксиоматики и законов внутренней логики, а не из необходимости интерпретации чего-то реального. Математическая модель может не иметь прототипа, так же как понятие «функция» не связывается с какой-то реальной зависимостью между величинами, а понятие «квадрат» с реальными площадями. Поэтому математической моделью (в широком толковании термина) считается любое описание задачи с использованием формализма математики и логики, безотносительно существования прототипа. К таким моделям следует отнести математическое описание процессов в атмосфере, в экономической системе или при управлении полетом ракеты, т.е. тех, что существуют реально. Но математическое описание лежит и в основе компьютерных игр, графических редакторов, систем проектирования и пр. С точки зрения создания и дальнейшей эксплуатации компьютерной программы между первой и второй группой задач различий нет - программа строится по математической модели независимо от наличия прототипа; обращение к прототипу при необходимости производится лишь при анализе результатов использования программы.
Рассмотренная классификация, как и любая иная, не исчерпывает всего многообразия существующих моделей и отдельных их особенностей. Однако для важным должно быть понимание того, что решение практической задачи на компьютере с неизбежностью требует построения информационной знаковой проверяемой модели.