
- •160001, Г. Вологда, ул. Челюскинцев, 3.
- •Предисловие
- •Введение
- •Раздел 1. Теория информации
- •Глава 1. Исходные понятия информатики
- •1.1. Начальные определения
- •1.2. Формы представления информации
- •1.3. Преобразование сообщений
- •Контрольные вопросы и задания
- •Глава 2. Понятие информации в теории Шеннона
- •2.1. Понятие энтропии
- •2.1.1. Энтропия как мера неопределенности
- •2.1.2. Свойства энтропии
- •2.1.3. Условная энтропия
- •2.2. Энтропия и информация
- •2.3. Информация и алфавит
- •Контрольные вопросы и задания
- •Глава 3. Кодирование символьной информации
- •3.1. Постановка задачи кодирования, Первая теорема Шеннона
- •3.2. Способы построения двоичных кодов
- •3.2.1. Алфавитное неравномерное двоичное кодирование сигналами равной длительности. Префиксные коды
- •3.2.2. Равномерное алфавитное двоичное кодирование. Байтовый код
- •3.2.3. Алфавитное кодирование с неравной длительностью элементарных сигналов. Код Морзе
- •3.2.4. Блочное двоичное кодирование
- •Контрольные вопросы и задания
- •Глава 4. Представление и обработка чисел в компьютере
- •4.1. Системы счисления
- •4.2. Представление чисел в различных системах счисления
- •4.2.1. Перевод целых чисел из одной системы счисления в другую
- •4.2.2. Перевод дробных чисел из одной системы счисления в другую
- •4.2.3. Понятие экономичности системы счисления
- •4.2.4. Перевод чисел между системами счисления 2 ↔ 8 ↔ 16
- •4.2.5. Преобразование нормализованных чисел
- •4.3. Кодирование чисел в компьютере и действия над ними
- •4.3.1. Кодирование и обработка в компьютере целых чисел без знака
- •4.3.2. Кодирование и обработка в компьютере целых чисел со знаком
- •4.3.3. Кодирование и обработка в компьютере вещественных чисел
- •Контрольные вопросы и задания
- •Глава 5. Передача информации
- •5.1. Общая схема передачи информации в линии связи
- •5.2. Характеристики канала связи
- •5.3. Влияние шумов на пропускную способность канала
- •5.4. Обеспечение надежности передачи и хранения информации
- •5.4.1. Постановка задачи
- •5.4.2. Коды, обнаруживающие ошибку
- •5.4.3. Коды, исправляющие одиночную ошибку
- •5.5. Способы передачи информации в компьютерных линиях связи
- •5.5.1. Канал параллельной передачи
- •5.5.2. Последовательная передача данных
- •5.5.3. Связь компьютеров по телефонным линиям
- •Контрольные вопросы и задания
- •Глава 6. Хранение информации
- •6.1. Классификация данных. Проблемы представления данных
- •6.2. Представление элементарных данных в озу
- •6.3. Структуры данных и их представление в озу
- •6.3.1. Классификация и примеры структур данных
- •6.3.2. Понятие логической записи
- •6.3.3. Организация структур данных в озу
- •6.4. Представление данных на внешних носителях
- •6.4.1. Иерархия структур данных на внешних носителях
- •6.4.2. Особенности устройств хранения информации
- •Контрольные вопросы и задания
- •Раздел 2. Алгоритмы. Модели. Системы
- •Глава 7. Элементы теории алгоритмов
- •7.1. Нестрогое определение алгоритма
- •7.2. Рекурсивные функции
- •7.3. Алгоритм как абстрактная машина
- •7.3.1. Общие подходы
- •7.3.2. Алгоритмическая машина Поста
- •7.3.3. Алгоритмическая машина Тьюринга
- •7.4. Нормальные алгоритмы Маркова
- •7.5. Сопоставление алгоритмических моделей
- •7.6. Проблема алгоритмической разрешимости
- •7.7. Сложность алгоритма
- •Контрольные вопросы и задания
- •Глава 8. Формализация представления алгоритмов
- •8.1. Формальные языки
- •8.1.1. Формальная грамматика
- •8.1.2. Способы описания формальных языков
- •8.2. Способы представления алгоритмов
- •8.2.1. Исполнитель алгоритма
- •8.2.2. Строчная словесная запись алгоритма
- •8.2.3. Графическая форма записи
- •8.2.4. Классификация способов представления алгоритмов
- •8.3. Структурная теорема
- •Контрольные вопросы и задания
- •Глава 9. Представление о конечном автомате
- •9.1. Общие подходы к описанию устройств, предназначенных для обработки дискретной информации
- •9.2. Дискретные устройства без памяти
- •9.3. Конечные автоматы
- •9.3.1. Способы задания конечного автомата
- •9.3.2. Схемы из логических элементов и задержек
- •9.3.3. Эквивалентные автоматы
- •Контрольные вопросы и задания
- •Глава 10. Модели и системы
- •10.1. Понятие модели
- •10.1.1. Общая идея моделирования
- •10.1.2. Классификация моделей
- •Модели структурные и функциональные
- •Модели натурные и информационные
- •Модели проверяемые и непроверяемые
- •Модели по назначению
- •10.1.3. Понятие математической модели
- •10.2. Понятие системы
- •10.2.1. Определение объекта
- •10.2.2. Определение системы
- •10.2.3. Формальная система
- •10.2.4. Значение формализации
- •10.3. Этапы решения задачи посредством компьютера
- •10.4. Об объектном подходе в прикладной информатике
- •Контрольные вопросы и задания
- •Заключение
- •Приложение а. Элементы теории вероятностей
- •А.1. Понятие вероятности
- •А.2. Сложение и умножение вероятностей
- •A.3. Условная вероятность
- •Контрольные вопросы и задания
- •Приложение б. Некоторые соотношения логики
- •Глоссарий
- •Список литературы
- •Содержание
- •Глава 4. Представление и обработка чисел в компьютере 45
- •Глава 5. Передача информации 69
- •Глава 6. Хранение информации 83
- •Раздел 2. Алгоритмы. Модели. Системы 98
- •Глава 7. Элементы теории алгоритмов 99
- •Глава 8. Формализация представления алгоритмов 120
- •Глава 9. Представление о конечном автомате 134
- •Глава 10. Модели и системы 147
7.6. Проблема алгоритмической разрешимости
Всякому алгоритму соответствует задача, для решения которой он был построен. Обратное утверждение в общем случае является неверным по двум причинам: во-первых, одна и та же задача может решаться различными алгоритмами; во-вторых, можно предположить (пока), что имеются задачи, для которых алгоритм вообще не может быть построен.
Как уже отмечалось, термин «алгоритм» появился в математике достаточно давно и использовался долго - под ним понималась процедура, позволявшая путем выполнения последовательности определенных элементарных шагов получать однозначный результат, не зависящий от того, кто эти шаги выполнял. Таким образом, само проведенное решение служило доказательством существования алгоритма. Однако был известен целый ряд математических задач, разрешить которые в общем виде не удавалось. Примерами могут послужить три древние геометрические задачи: о трисекции угла, о квадратуре круга и об удвоении куба - ни одна из них не имеет общего способа решения с помощью циркуля и линейки без делений.
Интерес математиков к задачам подобного рода привел к постановке вопроса: возможно ли, не решая задачи, доказать, что она алгоритмически неразрешима, т.е. что нельзя построить алгоритм, который обеспечил бы ее общее решение? Ответ на это вопрос важен, в том числе, и с практической точки зрения, например, бессмысленно пытаться решать задачу на компьютере и разрабатывать для нее программу, если доказано, что она алгоритмически неразрешима. Именно для ответа на данный вопрос и понадобилось сначала дать строгое определение алгоритма, без чего обсуждение его существования просто не имело смысла. Построение такого определения, как уже знаем, привело к появлению формальных алгоритмических систем, что дало возможность математического доказательства неразрешимости ряда проблем. Оно сводится к доказательству невозможности построения рекурсивной функции, решающей задачу, либо (что эквивалентно) к невозможности построения машины Тьюринга для нее, либо несостоятельности любой (какой-либо) другой модели из представленных на рис. 7.3. Т.е. задача считается алгоритмически неразрешимой, если не существует машины Тьюринга (или рекурсивной функции, или нормального алгоритма Маркова), которая ее решает.
Первые доказательства алгоритмической неразрешимости касались некоторых вопросов логики и самой теории алгоритмов. Оказалось, например, что неразрешима задача установления истинности произвольной формулы исчисления предикатов (т.е. исчисление предикатов неразрешимо) - эта теорема была доказана в 1936г. Черчем.
В 1946—47 гг. А.А. Марковым и Э. Постом независимо друг от друга доказали отсутствие алгоритма для распознавания эквивалентности слов в любом ассоциативном исчислении.
В теории алгоритмов к алгоритмически неразрешимой относится «.проблема остановки»: можно ли по описанию алгоритма (Q) и входным данным (х) установить, завершится ли выполнение алгоритма результативной остановкой? Эта проблема имеет прозрачную программистскую интерпретацию. Часто ошибки разработки программы приводят к зацикливанию - ситуации, когда цикл не завершается и не происходит завершения работы программы и остановки. Неразрешимость проблемы остановки означает, что нельзя создать общий (т.е. пригодный для любой программы) алгоритм отладки программ. Неразрешимой оказывается и проблема распознавания эквивалентности алгоритмов: нельзя построить алгоритм, который для любых двух алгоритмов (программ) выяснял бы, всегда ли они приводят к одному и тому же результату или нет.
Важность доказательства алгоритмической неразрешимости в том, что если такое доказательство получено, оно имеет смысл закона-запрета, позволяющего не тратить усилия на поиск решения, подобно тому, как законы сохранения в физике делают бессмысленными попытки построения вечного двигателя. Вместе с этим необходимо сознавать, что алгоритмическая неразрешимость какой-либо задачи в общей постановке не исключает возможности того, что разрешимы какие-то ее частные случаи. Справедливо и обратное утверждение: решение частного случая задачи еще не дает повода считать возможным ее решения в самом общем случае, т.е. не свидетельствует о ее общей алгоритмической разрешимости. Роль абстрактных алгоритмических систем в том, что именно они позволяют оценить возможность нахождения полного (общего) решения некоторого класса задач. Для специалиста в области информатики важно сознавать, что наличие алгоритмически неразрешимых проблем приводит к тому, что оказывается невозможным построить универсальный алгоритм, пригодный для решения любой задачи (и, следовательно, бессмысленно тратить силы на его создание). К подобным проблемам приводят и попытки алгоритмизировать сложную интеллектуальную деятельность человека, например, обучение других людей, сочинение стихов и пр.