
- •160001, Г. Вологда, ул. Челюскинцев, 3.
- •Предисловие
- •Введение
- •Раздел 1. Теория информации
- •Глава 1. Исходные понятия информатики
- •1.1. Начальные определения
- •1.2. Формы представления информации
- •1.3. Преобразование сообщений
- •Контрольные вопросы и задания
- •Глава 2. Понятие информации в теории Шеннона
- •2.1. Понятие энтропии
- •2.1.1. Энтропия как мера неопределенности
- •2.1.2. Свойства энтропии
- •2.1.3. Условная энтропия
- •2.2. Энтропия и информация
- •2.3. Информация и алфавит
- •Контрольные вопросы и задания
- •Глава 3. Кодирование символьной информации
- •3.1. Постановка задачи кодирования, Первая теорема Шеннона
- •3.2. Способы построения двоичных кодов
- •3.2.1. Алфавитное неравномерное двоичное кодирование сигналами равной длительности. Префиксные коды
- •3.2.2. Равномерное алфавитное двоичное кодирование. Байтовый код
- •3.2.3. Алфавитное кодирование с неравной длительностью элементарных сигналов. Код Морзе
- •3.2.4. Блочное двоичное кодирование
- •Контрольные вопросы и задания
- •Глава 4. Представление и обработка чисел в компьютере
- •4.1. Системы счисления
- •4.2. Представление чисел в различных системах счисления
- •4.2.1. Перевод целых чисел из одной системы счисления в другую
- •4.2.2. Перевод дробных чисел из одной системы счисления в другую
- •4.2.3. Понятие экономичности системы счисления
- •4.2.4. Перевод чисел между системами счисления 2 ↔ 8 ↔ 16
- •4.2.5. Преобразование нормализованных чисел
- •4.3. Кодирование чисел в компьютере и действия над ними
- •4.3.1. Кодирование и обработка в компьютере целых чисел без знака
- •4.3.2. Кодирование и обработка в компьютере целых чисел со знаком
- •4.3.3. Кодирование и обработка в компьютере вещественных чисел
- •Контрольные вопросы и задания
- •Глава 5. Передача информации
- •5.1. Общая схема передачи информации в линии связи
- •5.2. Характеристики канала связи
- •5.3. Влияние шумов на пропускную способность канала
- •5.4. Обеспечение надежности передачи и хранения информации
- •5.4.1. Постановка задачи
- •5.4.2. Коды, обнаруживающие ошибку
- •5.4.3. Коды, исправляющие одиночную ошибку
- •5.5. Способы передачи информации в компьютерных линиях связи
- •5.5.1. Канал параллельной передачи
- •5.5.2. Последовательная передача данных
- •5.5.3. Связь компьютеров по телефонным линиям
- •Контрольные вопросы и задания
- •Глава 6. Хранение информации
- •6.1. Классификация данных. Проблемы представления данных
- •6.2. Представление элементарных данных в озу
- •6.3. Структуры данных и их представление в озу
- •6.3.1. Классификация и примеры структур данных
- •6.3.2. Понятие логической записи
- •6.3.3. Организация структур данных в озу
- •6.4. Представление данных на внешних носителях
- •6.4.1. Иерархия структур данных на внешних носителях
- •6.4.2. Особенности устройств хранения информации
- •Контрольные вопросы и задания
- •Раздел 2. Алгоритмы. Модели. Системы
- •Глава 7. Элементы теории алгоритмов
- •7.1. Нестрогое определение алгоритма
- •7.2. Рекурсивные функции
- •7.3. Алгоритм как абстрактная машина
- •7.3.1. Общие подходы
- •7.3.2. Алгоритмическая машина Поста
- •7.3.3. Алгоритмическая машина Тьюринга
- •7.4. Нормальные алгоритмы Маркова
- •7.5. Сопоставление алгоритмических моделей
- •7.6. Проблема алгоритмической разрешимости
- •7.7. Сложность алгоритма
- •Контрольные вопросы и задания
- •Глава 8. Формализация представления алгоритмов
- •8.1. Формальные языки
- •8.1.1. Формальная грамматика
- •8.1.2. Способы описания формальных языков
- •8.2. Способы представления алгоритмов
- •8.2.1. Исполнитель алгоритма
- •8.2.2. Строчная словесная запись алгоритма
- •8.2.3. Графическая форма записи
- •8.2.4. Классификация способов представления алгоритмов
- •8.3. Структурная теорема
- •Контрольные вопросы и задания
- •Глава 9. Представление о конечном автомате
- •9.1. Общие подходы к описанию устройств, предназначенных для обработки дискретной информации
- •9.2. Дискретные устройства без памяти
- •9.3. Конечные автоматы
- •9.3.1. Способы задания конечного автомата
- •9.3.2. Схемы из логических элементов и задержек
- •9.3.3. Эквивалентные автоматы
- •Контрольные вопросы и задания
- •Глава 10. Модели и системы
- •10.1. Понятие модели
- •10.1.1. Общая идея моделирования
- •10.1.2. Классификация моделей
- •Модели структурные и функциональные
- •Модели натурные и информационные
- •Модели проверяемые и непроверяемые
- •Модели по назначению
- •10.1.3. Понятие математической модели
- •10.2. Понятие системы
- •10.2.1. Определение объекта
- •10.2.2. Определение системы
- •10.2.3. Формальная система
- •10.2.4. Значение формализации
- •10.3. Этапы решения задачи посредством компьютера
- •10.4. Об объектном подходе в прикладной информатике
- •Контрольные вопросы и задания
- •Заключение
- •Приложение а. Элементы теории вероятностей
- •А.1. Понятие вероятности
- •А.2. Сложение и умножение вероятностей
- •A.3. Условная вероятность
- •Контрольные вопросы и задания
- •Приложение б. Некоторые соотношения логики
- •Глоссарий
- •Список литературы
- •Содержание
- •Глава 4. Представление и обработка чисел в компьютере 45
- •Глава 5. Передача информации 69
- •Глава 6. Хранение информации 83
- •Раздел 2. Алгоритмы. Модели. Системы 98
- •Глава 7. Элементы теории алгоритмов 99
- •Глава 8. Формализация представления алгоритмов 120
- •Глава 9. Представление о конечном автомате 134
- •Глава 10. Модели и системы 147
4.3.2. Кодирование и обработка в компьютере целых чисел со знаком
Кодирование целых чисел, имеющих знак, можно осуществить двумя способами. В первом варианте один (старший) разряд машинном слове отводится для записи знака числа; при этом условились кодировать знак «+» нулем, знак «-» - единицей. Под запись самого числа, очевидно, остается 15 двоичных разрядов, что обеспечивает наибольшее значение числа Zmax = 215 - 1 = 3276710. Такое представление чисел называется прямым кодом. Однако его применение усложняет порядок обработки чисел; например, операция сложения двух чисел с разными знаками должна быть заменена операцией вычитания меньшего из большего с последующим присвоением результату знака большего по модулю числа. Другими словами, операция сопровождается большим количеством проверок условий и выработкой признаков, в соответствии с которыми выбирается то или иное действие.
Альтернативным вариантом является представление чисел со знаком в дополнительном коде. Идея построения дополнительного кода достаточно проста: на оси целых положительных чисел, помещающихся в машинное слово (0 ÷ 65535), сместим положение «О» на середину интервала; числа, попадающие в первую половину (0 ÷ 32767) будем считать положительными, а числа из второй половины (32768 ÷ 65535) - отрицательными. В этом случае судить о знаке числа можно будет по его величине и в явном виде выделение знака не потребуется. Например, 1000000000000012 = 3276910 является кодом отрицательного числа, а 0000000000000012 = 110 - кодом положительного. Принадлежность к интервалу кодов положительных или отрицательных чисел видна по состоянию старшего бита - у кодов положительных чисел его значение «0», отрицательных - «1». Это напоминает представление со знаком, но не является таковым, поскольку используется другой принцип кодирования. Его применение позволяет заменить вычитание чисел их суммированием в дополнительном коде. Убедимся в этом чуть позднее после того, как обсудим способ построения дополнительного кода целых чисел.
Дополнением (D) k-разрядного целого числа Z в системе счисления р называется величина D(ZP, k) = pk - Z.
Данную формулу можно представить в ином виде: D(ZP, k) = ((pk - 1) - Z) + 1. Число pk - 1 согласно (4.8), состоит из k наибольших в данной системе счисления цифр (р - 1), например, 999910, FFF16 или 11111112. Поэтому (pk - 1) - Z можно получить путем дополнения до р-1 каждой цифры числа Z и последующим прибавлением к последнему разряду 1.
Пример 4.13
Построить дополнение числа 27810. В данном случае р = 10, k = 3.
Важным свойством дополнения является то, что его сумма с исходным числом в заданной разрядной сетке будет равна 0. В рассмотренном примере:
В разряде тысяч 1 должна быть отброшена, поскольку она выходит за отведенную разрядную сетку.
Так как в двоичной системе счисления дополнением 1 является 0, а дополнением 0 является 1, построение D(Z2, k) сводится к инверсии данного числа, т.е. замена нулей единицами и единиц нулями, и прибавлением 1 к последнему разряду. Другими словами, дополнение двоичного числа формируется в два этапа:
строится инвертированное представление исходного числа;
к инвертированному представлению прибавляется 1 по правилам двоичной арифметики.
Дополнительный код (DK) двоичных целых чисел строится по следующим правилам:
для Z2 ≥ 0 дополнительный код совпадает с самим числом (DK = Z2);
для Z2 < 0 дополнительный код совпадает с дополнением модуля числа, т.е. DK = D(|Z2|,k).
Пример 4.14
Построить дополнительные двоичные коды чисел (а) 310 и (b) -310.
Вновь убеждаемся, что
Сопоставление прямых и дополнительных кодов представлено в виде таблицы:
Видно, что общее количество кодов совпадает и, следовательно, одинаковым будет количество кодируемых чисел в обоих способах. Точнее, дополнительных кодов оказывается на один больше, чем прямых, и интервал целых чисел со знаком при их размещении в 2-байтном машинном слове составляет [-32768; 32767] - именно такими являются граничные значения целых чисел типа Integer в языке PASCAL, что свидетельствует об использовании дополнительного кодирования в представлении чисел. Перевод в дополнительный код происходит автоматически при вводе чисел; в таком виде числа хранятся в ОЗУ и затем участвуют в арифметических операциях. При этом, как уже было сказано, операция вычитания двух чисел как самостоятельная отсутствует - она заменяется сложением первого числа с дополнительным кодом второго, т.е. просто сложением содержимого двух ячеек памяти. Убедимся в правомочности этого.
Пример 4.15
Найти значение (27 -3)10 в двоичной кодировке.
В данном случае появление 1 в регистре переполнения не интерпретируется как ошибка вычислений, поскольку на ее отсутствие указывают знаки чисел и результата. Порядок проверок и анализа корректности операций сложения-вычитания (Z = Z(1) + Z(2)) можно представить в виде таблицы:
Таблица 4.2.
Необходимо уточнить, что при выполнении вычитания отрицательного числа оно из дополнительного кода переводится в прямой, и вновь вместо вычитания производится сложение.
Подобным же образом число из дополнительного кода переводится в прямой при выполнении операции умножения; перемножаются всегда положительные числа по рассмотренным выше правилам; знаковый бит результата, очевидно, будет содержать 0, если знаки чисел одинаковы, и 1 при противоположных знаках.
Над множеством целых чисел со знаком операция деления не определена, поскольку в общем случае ее результатом будет вещественное число. Однако допустимыми являются операции целочисленного деления и нахождения остатка от целочисленного деления (те, что немного ранее было обозначено div и mod). Точнее, значения обеих величин находятся одновременно в одной процедуре, которая в конечном счете сводится к последовательности вычитаний или, еще точнее, сложений с дополнительным кодом делителя. Примем обозначения: Z(1) - делимое; Z(2) -делитель; L - результат целочисленного деления Z(1) на Z(2); R - остаток от целочисленного деления Z(1) на Z(2). Эти величины связаны между собой довольно очевидным соотношением:
из которого следует алгоритм нахождения значений L и R для заданных Z(1) и Z(2); его блок-схема для положительных Z(1) на Z(2) представлена на рис. 4.7.
Таким образом, операции div и mod, как, впрочем, и операция умножения, реализуются программно, т.е. сводятся к последовательности небольшого числа более простых действий. При этом уровень программной реализации может быть различным. Если реализация выполнена на уровне команд центрального процессора, то эти операции оказываются доступны из любого приложения (любой прикладной программы). Если же в системе команд процессора эти микропрограммы отсутствуют, их приходится описывать в виде процедур в самих приложениях и, следовательно, они будут доступны только в этих приложениях.