
- •160001, Г. Вологда, ул. Челюскинцев, 3.
- •Предисловие
- •Введение
- •Раздел 1. Теория информации
- •Глава 1. Исходные понятия информатики
- •1.1. Начальные определения
- •1.2. Формы представления информации
- •1.3. Преобразование сообщений
- •Контрольные вопросы и задания
- •Глава 2. Понятие информации в теории Шеннона
- •2.1. Понятие энтропии
- •2.1.1. Энтропия как мера неопределенности
- •2.1.2. Свойства энтропии
- •2.1.3. Условная энтропия
- •2.2. Энтропия и информация
- •2.3. Информация и алфавит
- •Контрольные вопросы и задания
- •Глава 3. Кодирование символьной информации
- •3.1. Постановка задачи кодирования, Первая теорема Шеннона
- •3.2. Способы построения двоичных кодов
- •3.2.1. Алфавитное неравномерное двоичное кодирование сигналами равной длительности. Префиксные коды
- •3.2.2. Равномерное алфавитное двоичное кодирование. Байтовый код
- •3.2.3. Алфавитное кодирование с неравной длительностью элементарных сигналов. Код Морзе
- •3.2.4. Блочное двоичное кодирование
- •Контрольные вопросы и задания
- •Глава 4. Представление и обработка чисел в компьютере
- •4.1. Системы счисления
- •4.2. Представление чисел в различных системах счисления
- •4.2.1. Перевод целых чисел из одной системы счисления в другую
- •4.2.2. Перевод дробных чисел из одной системы счисления в другую
- •4.2.3. Понятие экономичности системы счисления
- •4.2.4. Перевод чисел между системами счисления 2 ↔ 8 ↔ 16
- •4.2.5. Преобразование нормализованных чисел
- •4.3. Кодирование чисел в компьютере и действия над ними
- •4.3.1. Кодирование и обработка в компьютере целых чисел без знака
- •4.3.2. Кодирование и обработка в компьютере целых чисел со знаком
- •4.3.3. Кодирование и обработка в компьютере вещественных чисел
- •Контрольные вопросы и задания
- •Глава 5. Передача информации
- •5.1. Общая схема передачи информации в линии связи
- •5.2. Характеристики канала связи
- •5.3. Влияние шумов на пропускную способность канала
- •5.4. Обеспечение надежности передачи и хранения информации
- •5.4.1. Постановка задачи
- •5.4.2. Коды, обнаруживающие ошибку
- •5.4.3. Коды, исправляющие одиночную ошибку
- •5.5. Способы передачи информации в компьютерных линиях связи
- •5.5.1. Канал параллельной передачи
- •5.5.2. Последовательная передача данных
- •5.5.3. Связь компьютеров по телефонным линиям
- •Контрольные вопросы и задания
- •Глава 6. Хранение информации
- •6.1. Классификация данных. Проблемы представления данных
- •6.2. Представление элементарных данных в озу
- •6.3. Структуры данных и их представление в озу
- •6.3.1. Классификация и примеры структур данных
- •6.3.2. Понятие логической записи
- •6.3.3. Организация структур данных в озу
- •6.4. Представление данных на внешних носителях
- •6.4.1. Иерархия структур данных на внешних носителях
- •6.4.2. Особенности устройств хранения информации
- •Контрольные вопросы и задания
- •Раздел 2. Алгоритмы. Модели. Системы
- •Глава 7. Элементы теории алгоритмов
- •7.1. Нестрогое определение алгоритма
- •7.2. Рекурсивные функции
- •7.3. Алгоритм как абстрактная машина
- •7.3.1. Общие подходы
- •7.3.2. Алгоритмическая машина Поста
- •7.3.3. Алгоритмическая машина Тьюринга
- •7.4. Нормальные алгоритмы Маркова
- •7.5. Сопоставление алгоритмических моделей
- •7.6. Проблема алгоритмической разрешимости
- •7.7. Сложность алгоритма
- •Контрольные вопросы и задания
- •Глава 8. Формализация представления алгоритмов
- •8.1. Формальные языки
- •8.1.1. Формальная грамматика
- •8.1.2. Способы описания формальных языков
- •8.2. Способы представления алгоритмов
- •8.2.1. Исполнитель алгоритма
- •8.2.2. Строчная словесная запись алгоритма
- •8.2.3. Графическая форма записи
- •8.2.4. Классификация способов представления алгоритмов
- •8.3. Структурная теорема
- •Контрольные вопросы и задания
- •Глава 9. Представление о конечном автомате
- •9.1. Общие подходы к описанию устройств, предназначенных для обработки дискретной информации
- •9.2. Дискретные устройства без памяти
- •9.3. Конечные автоматы
- •9.3.1. Способы задания конечного автомата
- •9.3.2. Схемы из логических элементов и задержек
- •9.3.3. Эквивалентные автоматы
- •Контрольные вопросы и задания
- •Глава 10. Модели и системы
- •10.1. Понятие модели
- •10.1.1. Общая идея моделирования
- •10.1.2. Классификация моделей
- •Модели структурные и функциональные
- •Модели натурные и информационные
- •Модели проверяемые и непроверяемые
- •Модели по назначению
- •10.1.3. Понятие математической модели
- •10.2. Понятие системы
- •10.2.1. Определение объекта
- •10.2.2. Определение системы
- •10.2.3. Формальная система
- •10.2.4. Значение формализации
- •10.3. Этапы решения задачи посредством компьютера
- •10.4. Об объектном подходе в прикладной информатике
- •Контрольные вопросы и задания
- •Заключение
- •Приложение а. Элементы теории вероятностей
- •А.1. Понятие вероятности
- •А.2. Сложение и умножение вероятностей
- •A.3. Условная вероятность
- •Контрольные вопросы и задания
- •Приложение б. Некоторые соотношения логики
- •Глоссарий
- •Список литературы
- •Содержание
- •Глава 4. Представление и обработка чисел в компьютере 45
- •Глава 5. Передача информации 69
- •Глава 6. Хранение информации 83
- •Раздел 2. Алгоритмы. Модели. Системы 98
- •Глава 7. Элементы теории алгоритмов 99
- •Глава 8. Формализация представления алгоритмов 120
- •Глава 9. Представление о конечном автомате 134
- •Глава 10. Модели и системы 147
4.2.3. Понятие экономичности системы счисления
Число в системе счисления р с k разрядами, очевидно, будет иметь наибольшее значение в том случае, если все цифры числа окажутся максимальными, т.е. равными р - 1. Тогда
Количество разрядов числа при переходе от одной системы счисления к другой в общем случае меняется. Очевидно, если р = qσ (σ - не обязательно целое), то (Zp)max = pk - 1 = qσk - 1. Т.е. количество разрядов числа в системах счисления р и q будут различаться в σ раз. Очевидно соотношение:
При этом основание логарифма никакого значения не имеет, поскольку σ определяется отношением логарифмов. Сравним количество цифр в числе 9910 и его представлении в двоичной системе счисления: 9910 = 11000112; т.е. двоичная запись требует 7 цифр вместо 2 в десятичной, σ = ln(10)/ln(2) = 3,322; следовательно, количество цифр в десятичном представлении нужно умножить на 3,322 и округлить в большую сторону: 2-3,322 = 6,644 = 7.
Введем понятие экономичности представления числа в данной системе счисления.
Под экономичностью системы счисления будем понимать то количество чисел, которое можно записать в данной системе с помощью определенного количества цифр.
Речь в данном случае идет не о количестве разрядов, а об общем количестве сочетаний цифр, которые интерпретируются как различные числа. Поясним на примере: пусть в распоряжении имеется 12 цифр. Можно разбить их на 6 групп по 2 цифры («0» и «1») и получить шестиразрядное двоичное число; общее количество таких чисел, как уже неоднократно обсуждалось, равно 26. Можно разбить заданное количество цифр на 4 группы по три цифры и воспользоваться троичной системой счисления - в этом случае общее количество различных их сочетаний составит 34. Аналогично можно произвести другие разбиения; при этом число групп определит разрядность числа, а количество цифр в группе - основание системы счисления. Результаты различных разбиений можно проиллюстрировать таблицей:
Из приведенных оценок видно, что наиболее экономичной оказывается троичная система счисления, причем, результат будет тем же, если исследовать случаи с другим исходным количеством сочетаний цифр.
Точное расположение максимума экономичности может быть установлено путем следующих рассуждений. Пусть имеется п знаков для записи чисел, а основание системы счисления р. Тогда количество разрядов числа k = п/р, а общее количество чисел (N), которые могут быть составлены, равно:
Если считать N(p) непрерывной функцией, то можно найти то значение рт, при котором iN принимает максимальное значение. Функция имеет вид, представленный на рис.4.3.
Для нахождения положения максимума нужно найти производную функции N(p), приравнять ее к нулю и решить полученное уравнение относительно р.
Приравнивая полученное выражение к нулю, получаем ln p = 1, или рт = е, где е = 2,71828... - основание натурального логарифма. Ближайшее к е целое число, очевидно, 3 - по этой причине троичная система счисления оказывается самой экономичной для представления чисел. В 60-х годах в нашей стране была построена вычислительная машина «Сетунь», которая работала в троичной системе счисления. Предпочтение все же отдается двоичной системе, поскольку по экономичности она оказывается второй за троичной, а технически она реализуется гораздо проще остальных. Таким образом, простота технических решений оказывается не единственным аргументом в пользу применения двоичной системы в компьютерах.