- •Распределение памяти. Динамическое выделение памяти. Работа с динамической памятью с помощью операций new и delete
- •3 Динамически загружаемые библиотеки
- •4 Загрузка программ. Абсолютная загрузка.
- •5 Загрузка программ. Относительная загрузка.
- •7. Сборка программ. Объектный модуль
- •8. Сборка программ. Библиотеки объектных модулей.
- •9. Варианты построения загрузчиков
- •10. Управление памятью. Основные положения размещения процессов в памяти
- •11. Управление памятью. Многоэтапная обработка пользовательской программы
- •12. Управление памятью. Логическое и физическое адресное пространство
- •13. Управление памятью. Устройство управления памятью
- •14. Модели взаимодействия компонент распределенной системы.
- •15. Взаимодействия компонент распределенной системы. Обмен сообщениями
- •16. Взаимодействия компонент распределенной системы. Дальний вызов процедур
- •17. Взаимодействия компонент распределенной системы. Использование удаленных объектов
- •18. Взаимодействия компонент распределенной системы. Модель единственного вызова
- •19. Взаимодействия компонент распределенной системы. Модель единственного экземпляра
- •22. Взаимодействие компонент распределенной системы. Использование свойств удаленных объектов
- •23. Взаимодействие компонент распределенной системы. Распределенные события.
- •24. Взаимодействие компонент распределенной системы. Распределенные транзакции.
- •25. Взаимодействие компонент распределенной системы. Безопасность в распределенных системах.
- •26. Взаимодействие компонент распределенной системы. Промежуточные среды в Microsoft .Net Framework
- •27. Методы взаимодействия процессов. Независимые и взаимодействующие процессы. Виды организации взаимосвязи процессов.
- •28. Методы взаимодействия процессов. Парадигма (шаблон) взаимодействия процессов: производитель – потребитель.
- •29. Методы взаимодействия процессов. Коммуникация процессов.
- •30. Методы взаимодействия процессов. Непосредственная коммуникация процессов. Косвенная коммуникация процессов.
- •31. Методы взаимодействия процессов. Буферизация и очередь сообщений.
- •32. Методы взаимодействия процессов. Клиент-серверная взаимосвязь – один из наиболее распространенных видов коммуникации процессов.
- •33. Особенности ос для мобильных устройств
- •34. Рынок ос для мобильных устройств. Windows Mobile
- •35. Рынок ос для мобильных устройств. Symbian os
- •36. Рынок ос для мобильных устройств. Google Android
- •37. Рынок ос для мобильных устройств. BlackBerry os
- •38. Обзор инструментальных средств разработки приложений для мобильных устройств под управлением платформ Windows Mobile. Средства разработки приложений для мобильных устройств.
- •39. Обзор инструментальных средств разработки приложений для мобильных устройств под управлением платформ Windows Mobile. Базы данных.
- •40. Основы облачных вычислений. Виды облачных вычислений.
- •41. Основы облачных вычислений. Инфраструктура как сервис (IaaS).
- •42. Основы облачных вычислений. Платформа как сервис (PaaS).
- •43. Основы облачных вычислений. Программное обеспечение как сервис (SaaS).
- •44. Основы облачных вычислений. Варианты развёртывания облачных систем.
- •45. Основы облачных вычислений. Достоинства облачных вычислений.
- •46. Основы облачных вычислений. Недостатки и проблемы облачных вычислений.
- •47. Основы облачных вычислений. Распределенные вычисления (grid computing).
- •48. Особенности ос для персональных компьютеров.
- •49. Параллельные компьютерные системы и особенности их ос
- •50. Симметричные и асимметричные мультипроцессорные системы
- •51. Распределенные компьютерные системы и особенности их ос
- •52. Виды серверов в клиент-серверных компьютерных системах
- •53. Кластерные вычислительные системы и их ос
- •54. Системы и ос реального времени
- •55. Карманные компьютеры (handhelds) и их ос
- •56. Вычислительные среды
54. Системы и ос реального времени
Системы реального времени часто используются как управляющие устройства для специальных приложений, - например, для научных экспериментов; в медицинских системах, связанных с изображениями; системах управления в промышленности; системах отображения (display); системах управления космическими полетами, АЭС и др. Для таких систем характерно наличие и выполнение четко определенные временные ограничения (время реакции – response time; время наработки на отказ и др.).
Различаются системы реального времени видов hard real-time и soft real-time.
Hard real-time – системы – системы реального времени, в которых при нарушении временных ограничений может возникнуть критическая ошибка (отказ) управляемого ею объекта. Примеры: система управления двигателем автомобиля; система управления кардиостимулятором. В таких системах вторичная память ограничена или отсутствует; данные хранятся в оперативной памяти (RAM) или постоянном запоминающем устройстве (ПЗУ, ROM). При использовании таких систем возможны конфликты с системами разделения времени, не имеющие места для ОС общего назначения. Выражаясь более простым языком, при работе подобных систем не допускаются прерывания; все необходимые данные для основного цикла работы системы должны предварительно быть загружены в память; процесс, выполняющий код такой системы, не должен подвергаться откачке на диск. ОС для таких систем обычно упрощены, вместо виртуальной памяти выделяется физическая, все другие виды виртуализации ресурсов исключены. Популярной практикой разработки ОС реального времени является практика разработки таких ОС на основе открытых исходных кодов ОС общего назначения путем "отсечения всего лишнего".
Soft real-time – системы – системы реального времени, в которых нарушение временных ограничений не приводит к отказу управляемого ею объекта. Обычно это системы управления несколькими взаимосвязанными системами с постоянно изменяющейся ситуацией. Пример - система планирования рейсов на коммерческих авиалиниях .
55. Карманные компьютеры (handhelds) и их ос
К данному классу устройств относятся карманные персональные компьютеры (КПК), и мобильные телефоны. Особенности и проблемы данного класса компьютеров следующие:
- ограниченный объем памяти;
- относительно медленные процессоры;
- маленький размер экрана мониторов (дисплеев);
- невысокая скорость связи через Интернет;
- связь для передачи данных осуществляется через Bluetooth или IrDA (причем последний часто отсутствует); имеются не все необходимые порты: например, часто в мобильных устройствах отсутствует порт USB.
В операционных системах и другом системном программном обеспечении для карманных и мобильных устройств приходится учитывать все эти ограничения, в частности, ограниченный объем памяти. В связи с этим целый ряд удобных повседневных программистских возможностей приходится для мобильных устройств запрещать (например, в JME нет вещественной арифметики).
56. Вычислительные среды
В современном мире ИТ имеет место тенденция к интеграции описанных выше устройств и их локальных сетей в вычислительные среды – интегрированные распределенные компьютерные системы для решения задач в различных проблемных областях. Вычислительные среды подразделяются на следующие виды:
1) традиционные вычислительные среды – локальные и региональные сети, используемые в течение нескольких десятков лет;
2) Web-ориентированные вычислительные среды – вычислительные среды на основе Web-сервисов, характерные для настоящего времени, начиная с 1990-х гг.; к этому классу относятся и среды для облачных вычислений;
3) встроенные (embedded) вычислительные среды – вычислительные среды для специализированных устройств, например, сети микропроцессоров, встроенных в элементы линии электропередач.
Все эти виды вычислительных сред должны адекватно обслуживаться операционными системами, в чем и состоят ближайшие задачи их разработки.
