- •1. Электрическая цепь постоянного тока. Основные понятия.
- •2. Законы Ома и Кирхгофа
- •3. Способы соединения элементов в эл. Цепи
- •4. Расчет цепей посредством двух законов Кирхгофа
- •5. Метод контурных токов
- •6. Метод узловых потенциалов
- •7. Метод эквивалентного генератора (активного двухполюсника)
- •8. Мощность в цепи постоянного тока.
- •10. Законы Ома и Кирхгофа в цепях переменного тока в различных формах записи.
- •11. Последовательное соединение r, l, c-элементов в цепи однофазного тока. Векторная диаграмма.
- •12. Резонанс напряжений. R, l, c-элементов. Векторная диаграмма.
- •13. Параллельное соединение r, l, c-элементов в цепи однофазного тока. Векторная диаграмма.
- •14. Мощность в цепях переменного тока. Баланс мощностей.
- •15. Расчёт электрических цепей синусоидального тока.
- •16. Трехфазные цепи. Основные понятия.
- •25 Расчет переходных процессов в электрической цепи
- •26 Магнитные цепи. Методы расчета
- •27 Устройство и принцип действия трансформатора коэф. Трансформации
- •28 Основные уравнения и векторная диаграмма трансформатора
- •29 Схема замещения трансформатора определение ее параметров
- •30 Внешняя характеристика и кпд трансформатора
- •31 Электрические машины постоянного тока устройство и принцип действия
- •32 Генераторы постоянного тока. Схемы включения и основные характеристики
- •33. Двигатель постоянного тока. Основные характеристики.
- •34. Схема включения и характеристики двигателя постоянного тока с параллельным возбуждением.
- •35. Схема включения и характеристики двигателя постоянного тока с независимым возбуждением.
- •36. Схема включения и характеристики двигателя постоянного тока с последовательным возбуждением.
- •37. Способы регулирования частоты вращения двигателя постоянного тока.
- •38. Асинхронные электродвигатели. Устройство и принцип действия.
- •39. Основные характеристики асинхронных двигателей.
- •40. Способы регулирования частоты вращения асинхронных двигателей.
- •41.Электропроводность полупроводников. Основные свойства p-n переходов.
- •42.Полупроводниковые диоды. Конструкции, технические характеристики и применение.
- •43.Типы полупроводниковых диодов. Основные параметры и характеристики
- •45. Тиристоры: устройство, классификация, вольт - амперные характеристики, основные параметры.
- •46.Устройство и принцип действия биполярного транзистора.
- •47.Схемы включения биполярных транзисторов.
29 Схема замещения трансформатора определение ее параметров
Уравнение равновесия МДС. Уравнение равновесия МДС составим по 2-му закону Кирхгофа для магнитной цепи трансформатора, изображенной на рис. 1.3. Примем, что положительные направления МДС первичной и вторичной обмоток совпадают с направлением потока Ф0, тогда
F1+F2=Uм (1.13)
Выражения для МДС F1 и F2, через токи в обмотках приведены в §1.1. Падение магнитного потенциала Uм в магнитопроводе трансформатора, работающего с нагрузкой, практически такое же, как при холостом ходе. Объясняется это тем, что магнитный поток Ф0 при х.х. и нагрузке практически одинаков, практически одинаково и магнитное сопротивление Rм. Однако при х.х. в трансформаторе действует только одна МДС х.х. первичной обмотки F0=i0w1, и можно записать
F0=Uм (1.14)
Приравнивая левые части выражений (1.13) и (1.14), получаем
i1w1+i2w2=i0w1. (1.15)
Если токи представляют собой синусоидальные функции времени, то уравнение равновесия МДС (1.15) можно записать в комплексной форме
Ì1w1+ Ì2w2= Ì0w1 (1.16) или Ì1w1=Ì0 w1+(- Ì2w2). (1.17)
Как видно из (1.17), первичная МДС имеет две составляющие: I0w0 - намагничивающую, необходимую для проведения основного магнитного потока Ф0 по магнитопроводу; и (-I2w2) - необходимую для компенсации размагничивающего действия вторичной обмотки, т.е. передачи энергии с первичной на вторичную сторону трансформатора.
Приведенный трансформатор. В общем случае в трансформаторе число витков в первичной и вторичной обмотках неодинаково (w2≠w1), что затрудняет количественный анализ трансформаторов посредством схем замещения и векторных диаграмм. Поэтому при анализе часто переходят от реального трансформатора к приведенному. Приведенным называют трансформатор, у которого w2=w1 и параметры вторичной обмотки пересчитаны таким образом, что мощность на каждом элементе вторичной цепи такая же, как и в реальном трансформаторе. Параметры вторичной обмотки, приведенные к числу витков первичной обмотки, имеют то же буквенное обозначение с верхним индексом “штрих”. Поскольку при приведении напряжение и число витков первичной обмотки не изменяются, то основной магнитный поток в приведенном и реальном трансформаторе одинаков. Следовательно, одинакова и ЭДС, приходящаяся на 1 виток вторичной обмотки. Значит:
E2'=E2w1/w2=KтE2=E1 (1.22)
Полная мощность вторичной цепи I2'E2'=I2E2, откуда
I2'=(E2/E2')I2=I2/Kт (1.23)
Уравнение равновесия МДС для приведенного трансформатора Ì1w1+ Ì2'w1=Ì0'w1, после сокращения на w1 преобразуется в уравнение равновесия токов
Ì1+ Ì2'=Ì0 (1.26)
Уравнения равновесия ЭДС и напряжений принимают вид:
Ù1= –È1 + Ì1'z1, Ù2'=È2 – Ì2'z2' (1.27)
Схема замещения. Представим ЭДС взаимоиндукции E1 и E2' в виде падения напряжения на некотором комплексном сопротивлении zm при протекании тока х.х. (намагничивающего) I0
È1= È2' = – Ì0zm (1.28)
Тогда уравнения (1.26) и (1.27) принимают вид
Ù1= Ì0 zm+ z1, 0= – Ì0 zm –Ì2'z2' – Ì2zn, (1.29) Ì1 = Ì0 + (- Ì2').
Нетрудно показать, что уравнения (1.29) – это уравнения, записанные по 1-му и 2-му законам Кирхгофа для электрической схемы, представленной на рис. 1.6.
Рис.
1.6
Эта электрическая схема и называется Т-образной схемой замещения трансформатора. Определив расчетным или экспериментальным путем (из опытов холостого хода и короткого замыкания) параметры трансформатора z1, z2' и zm, можно по схеме замещения проводить расчет основных величин и характеристик - токов, напряжений, мощности, КПД и коэффициента мощности.
