Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Основные формы взаимодействия неалельных генов

.docx
Скачиваний:
26
Добавлен:
15.12.2019
Размер:
31.77 Кб
Скачать

Основные формы взаимодействия неалельных генов – комплементарность, эпистаз и полимерия. Они преимущественно видоизменяют классическую формулу расщепления за фенотипом, установленную Г. Менделем для дигибридного скрещивания (9:3:3:1).

Комплементарность (лат. complementum – дополнения). Комплементарными, или взаимодополняющими, называются неаллельные гены, которые поодиночке не проявляют своего действия, но при одновременном наличии в генотипе предопределяют развитие нового признака. У душистого горошка окраски цветков обусловлена двумя доминантными неаллельными генами, из них один ген (А) обеспечивает синтез бесцветного субстрата, другой (В) – синтез пигмента. Поэтому при скрещивании растений с белыми цветками (ААbb х ааВВ) все растения в первом поколении F1 (АаВb) имеют окрашенные цветки, а во втором поколении F2 происходит расщепления за фенотипом в соотношении 9:7, где 9/16 растений имеют окрашенные цветки и 7/16 – неокрашенные.

У человека нормальный слух обусловлен комплементарным взаимодействием двух доминантных неаллельных генов D и Е, из них один определяет развитие завитка, другой – слухового нерва. Люди с генотипами D–Е– имеют нормальный слух, с генотипами D–ее и ddЕ– – глухие. В браке, где родители глухие (DDee ´ ddEE), все дети будут иметь нормальный слух (DdEe).

Епистаз – взаимодействие неаллельных генов, при котором один ген подавляет действие другого, неаллельного, гена. Первый ген называется эпистатическим, или супрессором (ингибитором), другой, неаллельний, ген – гипостатическим. Если эпистатический ген – доминантный, эпистаз называют доминантным (А>В). И, наоборот, если эпистатический ген рецессивный, эпистаз – рецессивный (аа>В или аа >вв). Взаимодействие генов при эпистазе противоположно комплементарности.

Пример доминантного эпистаза. У кур доминантный аллель С одного гена обуславливает развитие окраски перья, но доминантный аллель І другого гена является его супрессором. Поэтому куры с генотипом І–С– – белые, а с генотипами ііСС и ііСс – окрашенные. В скрещивании белых кур (ІІСС х іісс) гибриды первого поколения F1 окажутся белыми, но при скрещивании F1 между собой во втором поколении F2 состоится расщепления за фенотипом в соотношении 13:3. Из 16 особей 3 будут окрашены (ііСС и ііСс), так как в них отсутствует доминантный ген-супрессор и есть доминантный ген окраски. Другие 13 особей будут белыми.

Примером рецесивного эпистаза может быть бомбейский феномен – необыкновенное наследование групп крови системы АВО, впервые выявленное в одной индийской семье. В семье, где отец имел группу крови І (О), а иметь – ІІІ (В), родилась девочка с группой І (О), она вступила в брак с мужчиной с группой крови ІІ(А) и у них родилось две девочки: одна из группой крови ІV (АВ), другая – с І (О). Рождение девочки с ІV (АВ) группой крови в семье, где отец имел ІІ (А), а мама – І (О) было необыкновенным. Генетики объяснили этот феномен так: девочка с группой ІV (АВ) унаследовала аллель ІА от отца, а аллель ІВ – от матери, но у матери аллель ІВ фенотипически не проявлялся, так как в ее генотипе присутствовал редкий рецессивний эпистатический ген s в гомозиготном состоянии, который спровоцировал фенотипичное проявление аллеля ІВ.

Гипостаз – взаимодействие неалельных генов, при котором доминантный ген одной аллельной пары подавляется эпистатическим геном из другой аллельной пары. Если ген А подавляет ген В (А>В), то по отношению к гену В взаимодействие неаллельных генов называется гипостазом, а по отношению к гену А – эпистазом.

Полимерия – взаимодействие неаллельных генов, при котором один и и тот же признак контролируют несколько доминантных неаллельных генов, которые действуют на этот признак однозначно, в равной степени, усиливая его проявление. Такие однозначные гены называют полимерными (множественными, полигенами) и их обозначают одной буквой латинского алфавита, но с разными цифровыми индексами. Например, доминантные полимерные гены – А1, А2, А3 и т.д., рецессивные – а1, а2, а3 и т.д. Соответственно обозначают генотипы – А1А1А2А2А3А3, а1а1а2а2а3а3. Признаки, которые контролируются полигенами, называют полигенными, а наследования этих признаков – полигенным, в отличие от моногенного, где признак контролируется одним геном. Явление полимерии впервые описал в 1908 г. шведский генетик Г. Нильсон-Эле при изучении наследования цвета зерна пшеницы.

Полимерия бывает кумулятивной и некумулятивной. При кумулятивной полимерии каждый ген в отдельности имеет слабое действие (слабую дозу), но количество доз всех генов в конечном результате суммируется, так что степень выражения признака зависит от числа доминантных аллелей. За типом полимерии у человека наследуются рост, масса тела, цвет кожи, умственные способности, величина артериального давления. Так, пигментация кожи у человека определяется 4-6 парами полимерных генов. В генотипе коренных жителей Африки имеются преимущественно доминантные аллели (Р1Р1Р2Р2Р3Р3Р4Р4), у представителей европеоидной рассы – рецессивные (p1p1p2p2p3p3p4p4). От брака темнокожего и белой женщины рождаются дети с промежуточным цветом кожи – мулаты (Р1р1P2р2P3р3P4р4). Если супруги – мулаты, то возможное рождение детей с пигментацией кожи от максимально светлой к максимально темной.

Полигенно в типичных случаях наследуются количественные признаки. Тем не менее в природе существуют примеры полигенного наследования качественных признаков, когда конечный результат не зависит от числа доминантных аллелей в генотипе – признак или проявляется, или не проявляется (некумулятивная полимерия).

Плейотропия – способность одного гена контролировать несколько признаков (множественное действие гена). Так, синдром Марфана в типичных случаях характеризуется триадой признаков: подвывихом хрусталика глаза, пороками сердца, удлинением костей пальцев рук и ног (арахнодактилия – паучьи пальцы). Этот комплекс признаков контролируется одним аутосомно-доминантным геном, который вызывает нарушения развития соединительной ткани

Эффект положения – вид взаимодействия неаллельных генов, обусловленный местом положения гена в генотипе.

Пример – наследование белка Rh-фактора (резус-фактора). У 85% европейцев резус-фактор имеется (Rh+), у 15% – его нет (Rh-). Определяется резус-фактор тремя доминантными генами (С, D, E), расположенными в хромосоме рядом друг с другом.

Два человека с одинаковым генотипом CcDDEe будут иметь разные фенотипы в зависимости от варианта расположения аллельных генов в паре гомологичных хромосом: в варианте А – много антигена Е, но мало антигена С; в варианте В – мало антигена Е, но много антигена С.

C c C c

D D D D

E e e E

Вариант А Вариант В

Комплементарным называется такой вид взаимодействия неаллельных генов, при котором действие гена из одной аллельной пары дополняется действием гена из другой аллельной пары, в результате чего формируется качественно новый признак.

Классический пример такого взаимодействия – наследование формы гребня у кур. Встречаются следующие формы гребня: листовидный – результат взаимодействия двух рецессивных неаллельных генов аabb; ореховидный – результат взаимодействия двух доминантных неаллельных генов A-B-; розовидный и гороховидный – c генотипами A-bb и aaB-, соответственно.

Другой пример – наследование окраски шерсти у мышей. Окраска бывает серая, белая и черная, а пигмент только один – черный. В основе формирования той или иной окраски шерсти лежит взаимодействие двух пар неаллельных генов:

A – ген, определяющий синтез пигмента;

a – ген, не определяющий синтез пигмента;

B – ген, определяющий неравномерное распределение пигмента;

b – ген, определяющий равномерное распределение пигмента.

Примеры комплементарного взаимодействия у человека: ретинобластома и нефробластома кодируются двумя парами неаллельных генов.

Возможные варианты расщепления в F2 при комплементарном взаимодействии: 9:3:4; 9:3:3:1; 9:7.

Эпистаз

Эпистаз - такой вид взаимодействия неаллельных генов, при котором действие гена из одной аллельной пары подавляется действием гена из другой аллельной пары.

Различают две формы эпистаза – доминантный и рецессивный. При доминантном эпистазе в качестве гена-подавителя (супрессора) выступает доминантный ген, при рецессивном эпистазе – рецессивный ген.

Пример доминантного эпистаза – наследование окраски оперения у кур. Взаимодействуют две пары неаллельных генов:

С – ген, определяющий окраску оперения (обычно пеструю),

с – ген, не определяющий окраску оперения,

I – ген, подавляющий окраску,

i – ген, не подавляющий окраску.

Варианты расщепления в F2 : 12:3:1, 13:3.

У человека примером доминантного эпистаза являются ферментопатии (энзимопатии) – заболевания, в основе которых лежит недостаточная выработка того или иного фермента.

Пример рецессивного эпистаза – так называемый «бомбейский феномен»: в семье у родителей, где мать имела группу крови О, а отец – группу крови А, родились две дочери, из которых одна имела группу крови АВ. Ученые предположили, что у матери в генотипе был ген IB, однако его действие было подавлено двумя рецессивными эпистатическими генами dd.

Полимерия - такой вид взаимодействия неаллельных генов, при котором несколько неаллельных генов определяют один и тот же признак, усиливая его проявление. Это явление противоположно плейотропии. По типу полимерии обычно наследуются количественные признаки, чем и обусловлено большое разнообразие их проявления в природе.

Например, окраска зерен у пшеницы определяется двумя парами неаллельных генов:

A1 – ген, определяющий красную окраску;

a1 – ген, не определяющий красную окраску;

A2 – ген, определяющий красную окраску;

a2 – ген, не определяющий красную окраску.

A1 A1 A2 A2генотип растений с красной окраской зерен;

a1 a1 a2 a2 - генотип растений с белой окраской зерен.

Расщепление в F2: 15:1 или 1:4:6:4:1.

У человека по типу полимерии наследуются такие признаки, как рост, цвет волос, цвет кожи, величина артериального давления, умственные способности.

«Эффект положения» генов.В нём участвуют гены одной хромосомы. «Эффект положения» проявляется в изменчивости функциональной активности (экспрессии) гена в зависимости от того, какой аллель находится в соседнем локусе. Так, эритроцитарные белки – антигены определяющие развитие «резус» групп крови синтезируются под контролем трёх генов (D,С, Е – доминантные аллели и рецессивные d, с, е) расположенных на близком расстоянии друг от друга в одной хромосоме. Индивидуумы имеющие генотип СDЕ/сDе и СDе/сDЕ (СсDDЕе) генетически идентичны.

Тем не менее у лиц с первой комбинацией - СDЕ/сDе аллелей образуется много антигена «Е» и мало «С», у лиц со второй комбинацией аллелей СDе/сDЕ наблюдается обратная картина, т.е. соседство аллеля «С» с аллелем «е» снижает его функциональную активность и антигена «Е» образуется мало. Эффект положения один из видов модулирования функции генов другими генами.

В первом случае «резус» конфликт приводит к тяжёлым последствиям, так в организме матери наблюдается высокий титр антител на антиген «Е», происходит массивная агглютинация эритроцитов плода и плод развивается в условиях гипоксии и других нарушениях функций печени, почек. Во втором случае антител в организме матери образуются меньше и беременность протекает более благополучно.

Модифицирующее действие генов. Модифицирующие гены не определяют развитие признаков, а изменяют проявление других генов. Ген А - модификатор - усиливающий

(и н т е н с и ф и к а т о р) или ослабляющий (с у п р е с с о р) действие другого гена В.

Ген А белок А

признак А, происходит изменение степени выраженности

(экспрессивность) гена А, под действием гена

Ген В белок В модификатора В

Плейотропия. Зависимость нескольких признаков от одного гена носит название плейотропии (гр. рleison — полный, tropos — способ), т. е. на­блюдается проявление множественных эффектов одного гена. Это явление было впервые обнаружено Менделем, хотя он специально его не исследовал. По его наблюдениям у растений с пур­пурными цветками всегда имелась красная окраска в основании черешков листьев, а кожура семян была бурого цвета. Эти три признака определялись действием одного гена. Н. И. Вавилов описал плейотропное действие гена черной окраски колоса у персидской пшеницы, который вызывал одновре­менно развитие другого признака — опушение колосковых чешуи. У дрозо­филы ген белой окраски глаз (w) одно­временно оказывает влияние на цвет тела, длину крыльев, строение поло­вого аппарата, снижает плодовитость, уменьшает продолжительность жизни. У человека известно наследственное заболевание — арахнодактилия («паучьи пальцы»—очень тонкие и длинные), или болезнь Марфана. Ген, опре­деляющий это заболевание, вызывает нарушение развития соединительной ткани и оказывает влияние одновре­менно на развитие нескольких призна­ков: нарушение в строении хрусталика глаза, аномалии в сердечно-сосудис­той системе.

Плейотропное действие гена может быть первичным и вторичным. При первичной плейотропии ген одновре­менно проявляет свое множественное действие. Например, измененный белок взаимодействует с цитоплазмой раз­личных клеточных систем или изме­няет свойства мембран в клетктзс нескольких органов. При вторичной плейотропии имеется одно первичное фенотипическое проявление гена, вслед за которым развивается ступенчатый процесс вторичных проявлений, при­водящих к множественным эффектам (серповидно-клеточная анемия).

При плейотропии ген, влияя на ка­кой-то один основной признак, может также изменять, модифицировать про­явление других генов, в связи с чем введено понятие о генах-модификато­рах. Последние усиливают или ослаб­ляют развитие признаков, кодируемых «основным» геном. Возможно, что каж­дый ген является одновременно геном' основного действия для «своего» при­знака и модификатором для других признаков. Таким образом, фенотип — результат взаимодействия генов и все­го генотипа с внешней средой в онто­генезе особи.

Пенетрантность.Количественный показатель фенотипического проявления гена назы­вается пенетрантностью. Пенетрантность характеризуется процентом осо­бей, у которых проявляется в фенотипе данный ген, по отношению к общему числу особей, у которых ген мог бы проявиться (если учитывается ре­цессивный ген, то у гомозигот, если доминантный — то у доминантных гомозигот и гетерозигот). Если, на­пример, мутантный ген проявляется у всех особей, говорят о 100 % пене-трантности, в остальных случаях — о неполной и указывают процент осо­бей, проявляющих ген. Так, наследуе­мость групп крови у человека по систе­ме АВО имеет стопроцентную пенетрант-ность, наследственные болезни: эпи­лепсия — 67 %, сахарный диабет — 65 %, врожденный вывих бедра — 20 % и т. д.

Экспрессивность. Термины «экспрессивность» и «пенетрантность» введены в 1927 г. Н. В. Тимофеевым-Ресовским. Экспрессив­ность и пенетрантность поддержива­ются естественным отбором. Обе закономерности необходимо иметь в виду при изучении наследственности у че­ловека. Следует помнить, что гены, контролирующие патологические при­знаки, могут иметь различную пене­трантность и экспрессивность, т. е. проявляться не у всех носителей ано­мального гена, и что у болеющих сте­пень болезненного состояния неоди­накова. Изменяя условия среды, мож­но влиять на проявление признаков.

Положения: 1. Организмов вне среды не суще­ствует. Поскольку организмы являются открытыми системами, находящимися в единстве с условиями среды, то и реализация наследственной информа­ции происходит под контролем среды.2. Один и тот же генотип способен дать различные фенотипы, что определяется условиями, в которых реализуется ге­нотип в процессе онтогенеза особи.3. В организме могут развиться лишь те признаки, которые обусловле­ны генотипом. Фенотипическая измен­чивость происходит в пределах нормы реакции по каждому конкретному при­знаку.4. Условия среды могут влиять на степень выраженности наследственного признака у организмов, имеющих соот­ветствующий ген (экспрессивность), или на численность особей, проявляющих соответствующий наследственный при­знак (пенетрантность).

Генокопии.Ряд сходных по фенотипическому проявлению призна­ков, в том числе и патологических, мо­жет вызываться различными неаллельными генами. Такое явление называет­ся генокопией. Генокопии обусловлива­ют генетическую неоднородность ряда заболеваний. Примером генокопий мо­гут служить различные виды гемо­филии, клинически проявляющиеся понижением свертываемости крови на воздуие.

Оказалось, что эти разные по гене­тическому происхождению формы, свя­занные с мутациями неаллельных ге­нов. ГемофилияАвызвана мутацией гена, контролирующего синтез факто­ра VIII (антигемофильного глобули­на), а причиной гемофилии В являет­ся дефицит фактора IX свертывающей системы крови. Примером генокопии являются также различные формы талассемии (гр. talassa — море) — забо­левания, сопровождающегося распа­дом эритроцитов, желтухой, увеличе­нием селезенки. Известны две формы этого заболевания (α и β), при кото­рых тормозится скорость синтеза раз­ных полепиптидных цепей. Впервые оно было обнаружено у жителей Среди­земноморья. Гены, обусловливающие это заболевание, относятся к сублетальным, как и ген серповидноклеточности.

Наследственные факторы, определяющие основу внутренней среды организма в широком смысле слова, принимают самое непосредственное участие в формировании патологических процессов, либо выступая в роли этиологического фактора, либо участвуя в патогенезе заболевания.

С генетической точки зрения все болезни в зависимости от относительной значимости наследственных и средовых факторов в их развитии можно разделить на наследственные болезни, болезни с наследственной предрасположенностью и ненаследственные болезни (рис. 2.3).

Наследственные болезни вызваны мутациями. Проявление патологического действия мутации как этиологического фактора практически не зависит от среды. Среда может только менять выраженность симптомов болезни и тяжесть ее течения. К заболеваниям этой группы относятся хромосомные и генные наследственные болезни. (болезнь Дауна, нейрофиброматоз, гемофилия, фенилкетонурия, муковисцидоз, ахондроплазия и др.).

О болезнях с наследственной предрасположенностью говорят тогда, когда болезнь развивается у лиц с определенной генетической характеристикой под влиянием факторов окружающей среды. Эти болезни называют также мультифакториальными. Наследственность служит и этиологическим, и патогенетическим фактором. Для пенетрантности мутантных генов необходим соответствующий фактор окружающей среды. К таким заболеваниям относятся, например, некоторые формы подагры, диабета, фармако- и экогенетические болезни. Подобные заболевания развиваются после контактов с проявляющим болезнь внешним фактором, специфичным для каждого мутантного гена. (атеросклероз, гипертоническая болезнь, туберкулез, экзема, псориаз, язвенная болезнь)

В происхождении ненаследственных болезней определяющую роль играет среда. Сюда относится большинство травм, инфекционных болезней, ожогов и т.д. Генетические факторы могут влиять только на течение патологических процессов (выздоровление, восстановительные процессы, компенсация нарушенных функций).

Наследственность и конституция — свойства организма, которые влияют на возникновение и развитие болезни, т. е. играют роль и этиологических, и патогенетических факторов. Эти свойства тесно взаимосвязаны, к тому же консервативны, устойчивы к действию факторов внешней среды.

Наследственность — это присущее всем организмам свойство воспроизводить сходный с родительским тип обмена веществ и связанные с ним структуры и функции.

Материальными носителями наследственных свойств являются хромосомы, расположенные в ядре клетки. Число хромосом в клетке у нормальных представителей каждого вида живых существ постоянно. У человека ядра клеток содержат 46 хромосом: 23 пары, 44 попарно одинаковые (аутосомы), а одна пара (половые хромосомы) неодинаковая у мужчин (XY) и женщин (XX).

Болезни, возникающие в результате нарушения расхождения хромосомы при делении половых клеток родителей, называются хромосомными. Чаще они связаны с аномалиями расхождения половых хромосом. Так, у мужчин при наличии лишней Х-хромосо-мы (XXY) развивается синдром Клайнфельтера: высокий рост, скудный волосяной покров, слабо развитая мускулатура, евнухоидизм, недоразвитость яичек, бесплодие, умственная отсталость. В случае Х-трисомии (XXX) у женщин наблюдается слабое развитие матки, вторичных половых признаков, нерегулярность менструаций, умственная отсталость. При синдроме Шерешевского — Тернера (ОХ) у женщин низкий рост, короткая шея, крыловидные кожные складки, отсутствуют яичники, вторичные половые признаки, недоразвиты половые органы, нередко нарушено цветное зрение. Довольно редко встречается истинный гермафродитизм, который характеризуется наличием и мужских, и женских половых желез и половых органов.

Из патологии, обусловленной неправильным расхождением аутосом, наиболее известна болезнь Дауна. Врожденная идиотия больных и пониженная устойчивость к инфекциям сопровождаются большим количеством структурных дефектов.

Хромосомные болезни являются патологией аппарата наследования, они не передаются по наследству, поскольку такая патология часто либо несовместима с жизнью, либо сопровождается бесплодием.

Понятие собственно наследственных болезней связано с нарушениями на уровне генов (генные мутации). Ген — это элементарная частица хромосомы, имеющая специфическую единую функцию и передающаяся как единое целое потомству. В 46 хромосомах клетки содержится около 6 млн. генов. В биохимическом отношении ген — это определенный участок ДНК, который несет наследственную информацию в виде генетического кода. Генные мутации могут иметь различную биологическую направленность — быть полезными или вредными для организма и вида.