
- •2)Виды элементов электрической цепи. Основные характеристики и параметры емкостного пассивного элемента.
- •3)Виды элементов электрической цепи. Основные характеристики и параметры индуктивного пассивного элемента
- •4)Виды источников электрической энергии и схемы их замещения.
- •17)Понятие графа и его элементы. Узловая и контурная матрицы, порядок их составления. Законы Киргофа в матричной форме
- •18)Синусоидальные токи, эдс и напряжения, их получение, основные параметры, аналитическое представление в виде функций времени.
- •19)Векторное изображение синусоидально изменяющихся величин, применение векторных диаграмм
- •20)Представление синусоидальных токов, эдс и напряжений в виде комплексных чисел, их отображение на комплексной плоскости.
- •21)Действующее и среднее значения синусоидальных токов, эдс и напряжений.
- •22)Свойства резистора в цепи синусоидального тока. Векторные диаграммы и комплексные соотношения
- •24)Свойства емкости в цепи синусоидального тока. Векторные диграммы икомплексные соотношения
- •27)Параллельное соединение резистивного и индуктивного элементов в цепи синусоидального тока
- •29)Применение статических конденсаторов для повышения Соэ(ф). Баланс мощностей в цепях синусоидального тока
- •30)Резонанс токов, в каких цепях и когда он возникает, основные свойства, зависимости и применение.
- •32)Методы анализа цепей переменного синусоидального тока. Символический метод
- •33).Цепи с индуктивно-связанными элементами, виды индуктивных связей, иих влияние
- •36)Понятие трехфазной электрической цепи, ее основные преимущества, получение трехфазной эдс
- •38)Способысоединения фаз генератора и приемника в трехфазных цепях. Соединение треугольником, фазные и линейные напряжения и токи, соотношения между ними, векторная диаграмма
- •39)Расчет симметричных режимов работы трехфазных систем
- •40.Расчет несимметричных режимов работы трехфазных систем
- •41)Применение векторных диаграмм для анализа несимметричных (аварийных) режимов в трехфазных цепях
- •43)Свойства симметричных составляющих токов и напряжений различных последовательностей
- •42)Понятие симметричных составляющих и их применение. Вычисление симметричных составляющих
- •44)Сопротивления симметричной трехфазной цепи для токов различных последовательностей
- •46)Мощность в трехфазных цепях, выражение мощности через симметричные составляющие
- •49)Экспериментальное определение коэффициентов четырехполюсника
- •50)Схемы замещения четырехполюсников, расчет параметров т-образной схемы замещения
- •52)Вторичные параметры симметричного четырехполюсника
- •54)Понятие электрического фильтра, виды фильтров и их свойства, типовые схемы построения фильтров
- •57. Полосовой и режекторный фильтры, их свойства и характеристики: полоса пропускания, зависимости коэффициента затухания, коэффициента фазы от частоты.
- •58.Характеристики периодических несинусоидальных величин, и причины их появления
- •60.Свойства периодических кривых, обладающих симметрией
- •61.Действующее значение периодической несинусоидальной переменной
- •62.Мощность в цепях периодического несинусоидального тока
- •63.Методика расчета линейных цепей при периодических несинусоидальных токах.
- •64.Особенности протекания несинусоидальных токов через пассивные элементы цепи
- •65.Высшие гармоники в трехфазных цепях
65.Высшие гармоники в трехфазных цепях
Напряжения
трехфазных источников энергии часто
бывают существенно несинусоидальными
(строго говоря, они несинусоидальны
всегда). При этом напряжения на фазах
В и С повторяют несинусоидальную кривую
напряжения
на фазе А со сдвигом на треть периода
Т основной гармоники:
.
Пусть для фазы А к-я гармоника напряжения
.
Тогда
с учетом, что
,
для к-х гармонических напряжений фаз
В и С соответственно можно записать:
Всю
совокупность гармоник к от 0 до
можно
распределить по трем группам:
1.
-
гармоники данной группы образуют
симметричные системы напряжений,
последовательность которых соответствует
последовательности фаз первой гармоники,
т.е. они образуют симметричные системы
напряжений прямой последовательности.
Действительно,
и
.
2.
.
Для этих гармоник имеют место соотношения:
т.е. гармоники данной группы образуют симметричные системы напряжений обратной последовательности.
3.
.
Для этих гармоник справедливо
Таким образом, векторы напряжений данной группы во всех фазах в любой момент времени имеют одинаковые модули и направления, т.е. эти гармоники образуют системы нулевой последовательности.
Рассмотрим особенности работы трехфазных систем, обусловленные наличием гармоник, кратных трем.
1. Если фазы генератора соединены в треугольник, то при несинусоидальных фазных ЭДС сумма ЭДС, действующих в контуре (см. рис. 7) не равна нулю, а определяется гармониками, кратными трем. Эти гармоники вызывают в замкнутом треугольнике генератора ток, даже когда его внешняя цепь разомкнута:
,
где
,
а
-
сопротивление фазы генератора для i-й
гармоники, кратной трем.
2. Если фазы генератора соединить в открытый треугольник (см. рис. 8), то на зажимах 1-2 будет иметь место напряжение, определяемое суммой ЭДС гармоник, кратных трем:
.
Таким образом, показание вольтметра в цепи на рис. 8
.
3. Независимо от способа соединения – в звезду или в треугольник – линейные напряжения не содержат гармоник, кратных трем.
При соединении в звезду это объясняется тем, что гармоники, кратные трем, как указывалось, образуют нулевую последовательность, ввиду чего исчезают из линейных напряжений, равных разности фазных.
При соединении в треугольник составляющие фазных ЭДС, кратные трем, не выявляются в линейных (фазных) напряжениях, так как компенсируются падениями напряжений на собственных сопротивлениях фаз генератора.
Таким образом, при соединении в треугольник напряжение генератора
и ток
.
В свою очередь при соединении в звезду
.
4. При симметричной нагрузке ток в нейтральном проводе определяется гармоническими, кратными трем, поскольку они образуют нулевую последовательность:
.
5. При соединении в звезду и отсутствии нейтрального провода фазные токи нагрузки не содержат гармоник, кратных трем (в соответствии с первым законом Кирхгофа сумма токов равна нулю, что невозможно при наличии этих гармоник). Соответственно нет этих гармоник и в фазных напряжениях нагрузки, связанных с токами законом Ома. Таким образом, при наличии гармоник, кратных трем, в фазных напряжениях генератора напряжение смещения нейтрали в симметричном режиме определяется этими гармониками
.