
- •1. История развития баз данных
- •3. Модели данных [1]
- •1. История развития баз данных
- •1.1. Файлы и файловые системы
- •1.2. Базы данных на больших эвм
- •1.3. Эпоха персональных компьютеров
- •1.4. Распределенные базы данных
- •1.5. Особенности настоящего периода:
- •2. Проблемы обработки информации
- •Основные функции субд
- •Типовая организация современной субд
- •3. Модели данных [1]
- •3.1. Системы управления файлами
- •3.2. Иерархические базы данных
- •3.3. Сетевые базы данных
- •3.4. Реляционные базы данных
- •Недостатки реляционных систем
- •3.5. Объектно-ориентированные базы данных
- •Преимущества и недостатки оосубд [8, с.817]
- •3.6. Объектно-реляционные базы данных
- •4. Реляционная модель данных [2]
- •5. Операции над отношениями
- •5.1. Теоретико-множественные операции реляционной алгебры
- •5.1.1 Объединение отношений
- •5.1.2. Пересечение отношений
- •5.1.3. Разность отношений
- •5.1.4. Расширенное декартово произведение
- •5.2. Специальные операции реляционной алгебры
- •5.2.1. Операция фильтрации
- •5.2.2. Операция проектирования
- •5.2.3. Операция условного соединения
- •5.2.4. Операция деления
- •5.2.5.Примеры использования операций реляционной алгебры
- •Целостность [8]
- •6. Проектирование бд Жизненный цикл бд
- •Проектирование бд
- •Проектирование бд с учетом конкретной архитектуры Архитектура клиент-сервер
- •Структура сервера базы данных
- •Проектирование распределенных бд
- •11.1. Концепции распределенных баз данных
- •Этапы проектирования реляционной базы данных
- •6.1. Разработка технического задания
- •6.2. Разработка структуры бд
- •6.3. Нормализация
- •6.3.1. Первая нормальная форма
- •6.3.2. Вторая нормальная форма
- •6.3.3. Третья нормальная форма
- •6.3.4. Нормальная форма Бойса-Кодда
- •6.3.5. Четвертая и пятая нормальные формы
- •6.3.6. Денормализация
- •Проектирование реляционной базы данных на основе декомпозиции универсального отношения (плоской таблицы)
- •7.Язык запросов sql (Structured Query Language)
- •7.1. История развития
- •7.2. Как работает sql?
- •7.3. Интерактивный и встроенный sql
- •7.4. Типы данных
- •7.6. Оператор выбора select (MySql)
- •7.6.1. Предикаты предложения where
- •7.6.2. Примеры использования оператора select
- •7.6.3. Применение агрегатных функций и вложенных запросов в операторе выбора
- •8. Система управления базами данных (субд) MySql
- •8.1. Преимущества MySql перед другими субд. Недостатки
- •8.2. Инструментарий, поставляемый с MySql
- •8.3. Установка и завершение связи с сервером
- •8.4. Команды sql для MySql. Правила оформления листингов
- •8.5. Основы использования MySql
- •8.5.1. Замечания по организации работ с MySql
- •8.5.2. Программы MySql
- •8.5.2.1. Стандартные опции программ MySql
- •8.5.2.2. Конфигурационные файлы
- •8.5.2.3. Переменные среды
- •8.5.2.4. Клиенты mysql и mysqlc
- •Программирование приложений
- •Использование специализированных библиотек и встраиваемого sql
- •Odbc - открытый интерфейс к базам данных на платформе ms Windows
- •Jdbc - мобильный интерфейс к базам данных на платформе Java
- •9. Администрирование бд
- •9.1. Управление данными на предприятии
- •9.2. Основные функции dba
- •9.3. Администрирование в MySql [1])
- •9.3.1. Обеспечение доступности данных
- •9.3.2. Поддержание целостности данных
- •9.3.3. Подготовка к катастрофе
- •9.3.4. Поддержка пользователей
- •9.3.5. Разработка и внедрение стандартов
- •9.3.6. О хранении данных
- •9.3.6.1. Журнал транзакций
- •9.3.6.2. Журнальные файлы
- •9.3.7. Безопасность
- •9.3.7.1. Схемы привилегий
- •9.3.7.2. Задание привилегий
- •9.3.8. Оптимизация
- •9.3.8.1. Оптимизация запросов
- •9.3.8.2. Оптимизатор запросов
- •9.3.8.3. Выбор типа столбцов и эффективность запросов
- •9.3.8.4. Эффективная загрузка данных
- •9.3.8.5. Оптимизация для администратора
- •10. Транзакции и параллельные вычисления
- •10.1. Параллельные запросы
- •10.2. Транзакции
- •10.3. Уровни изоляции
- •10.4. Выполнение транзакций
- •10.5. Блокировки
- •10.6. Программные блокировки
- •Мониторы транзакций
- •12. Направления и тенденции развития баз данных
- •12.1. Ограничения реляционных систем
- •12.2. Особенности построения информационных хранилищ
- •Что достигается через использование технологии хранилищ данных?
- •Проблемы хранилищ данных
- •12.3. Olap-технология
- •Правила для olap-систем
- •12.3.1. Реляционные olap-системы
- •12.3.2. Многомерные olap-системы
- •12.3.3. Принципы построения многомерной базы данных
- •12.4. Oltp-технологии
- •13. Интеграция субд в среду Web
- •13.1. Публикация бд в Интернете
- •13.1.1. Общие концепции публикации бд в Интернете
- •13.1.2. Технологии публикации бд в Internet.
- •13.2. Сценарии JavaScript, jScript и vbScript
- •13.3. Элементы управления ActiveX
- •13.4. Апплеты и сервлеты Java
- •13.5. Интерфейсы
- •13.5.1. Интерфейсы cgi и WinCgi
- •13.5.2. Интерфейс isapi/nsapi
- •13.5.3. Asp, php, idc/htx-страницы
- •13.5.4. Формирование Web-страниц
- •13.5.5. Интерфейсы ole db, ado, odbc
- •13.6. Статическая публикация бд
- •13.7. Динамическая публикация бд
- •13.9. Протоколы передачи гипертекста
- •13.10. Универсальный указатель ресурсов
- •13.11. Состав и теги html-документа
- •13.15. Двухуровневые Web-приложения
- •13.16. Трехуровневые Web-приложения
- •13.17. Многоуровневые Web-приложения
- •13.18. Характеристики интерфейсов ole db, ado и odbc
- •Список использованной литературы
- •Приложения 1. Типы таблиц, поддерживаемых MySql
- •Приложение 2. Встроенные функции
- •Управляющие функции sql для MySql
- •Статистические функции
- •Математические функции
- •Строковые функции
- •Функции работы с датой и временем
- •Приложение 3. Инструкции языка sql для MySql
- •Приложение 4. Маленькая база для маленькой компании (OpenOffice_MySql) Приложение 5. MySql – начинающим администраторам Приложение 6. О метаданных
Типовая организация современной субд
Организация типичной СУБД и состав ее компонентов соответствует рассмотренному выше набору функций. Напомним, для СУБД выделены следующие основные функции:
управление данными во внешней памяти;
управление буферами оперативной памяти;
управление транзакциями;
журнализация и восстановление БД после сбоев;
поддержание языков БД.
Логически в современной реляционной СУБД можно выделить наиболее внутреннюю часть - ядро СУБД (часто его называют Data Base Engine), компилятор языка БД (обычно SQL), подсистему поддержки времени выполнения, набор утилит. В некоторых системах эти части выделяются явно, в других - нет, но логически такое разделение можно провести во всех СУБД.
Ядро СУБД отвечает за управление данными во внешней памяти, управление буферами оперативной памяти, управление транзакциями и журнализацию. Соответственно, можно выделить такие компоненты ядра (по крайней мере, логически, хотя в некоторых системах эти компоненты выделяются явно), как менеджер данных, менеджер буферов, менеджер транзакций и менеджер журнала. Функции этих компонентов взаимосвязаны, и для обеспечения корректной работы СУБД все эти компоненты должны взаимодействовать по тщательно продуманным и проверенным протоколам. Ядро СУБД обладает собственным интерфейсом, не доступным пользователям напрямую и используемым в программах, производимых компилятором SQL (или в подсистеме поддержки выполнения таких программ) и утилитах БД. Ядро СУБД является основной резидентной частью СУБД. При использовании архитектуры "клиент-сервер" ядро является основной составляющей серверной части системы.
Основной функцией компилятора языка БД является компиляция операторов языка БД в некоторую выполняемую программу. Основной проблемой реляционных СУБД является то, что языки этих систем (а это, как правило, SQL) являются непроцедурными, т.е. в операторе такого языка специфицируется некоторое действие над БД, но эта спецификация не является процедурой, а лишь описывает в некоторой форме условия совершения желаемого действия. Поэтому компилятор должен решить, каким образом выполнять оператор языка прежде, чем произвести программу. Применяются достаточно сложные методы оптимизации операторов. Результатом компиляции является выполняемая программа, представляемая в некоторых системах в машинных кодах, но более часто в выполняемом внутреннем машинно-независимом коде. В последнем случае реальное выполнение оператора производится с привлечением подсистемы поддержки времени выполнения, представляющей собой, по сути дела, интерпретатор этого внутреннего языка.
Наконец, в отдельные утилиты БД обычно выделяют такие процедуры, которые слишком накладно выполнять с использованием языка БД, например, загрузка и выгрузка БД, сбор статистики, глобальная проверка целостности БД и т.д. Утилиты программируются с использованием интерфейса ядра СУБД, а иногда даже с проникновением внутрь ядра.
3. Модели данных [1]
База данных (БД) – именованная совокупность данных, отражающая состояние объектов и их отношений в рассматриваемой предметной области.
Система управления базами данных (СУБД) – совокупность языковых и программных средств, предназначенных для создания, ведения и совместного использования БД многими пользователями.
Банк данных – это система специальным образом организованных данных – баз данных, программных, технических, языковых и организационно-методических средств, предназначенных для обеспечения централизованного накопления и коллективного многоцелевого использования данных.
Базы данных – одна из современных важнейших компьютерных технологий. Сейчас они чаще всего связываются с банками, однако решение многих задач, в том числе инженерно-технических, связано с применением баз данных.
Первые попытки отследить информацию о деталях для сборки компонентов, участвующих в проекте Apollo (проект полета на луну) показали огромную избыточность. Почти все данные повторялись в двух и более файлах.
В 1968 г. компаниями Rockwell и IBM была разработана специальная автоматизированная система IMS (Information Management System), заложившая основу концепции СУБД.
Ключевые новшества этой системы:
разделение данных и функций деловой логики. Прикладные программисты получили возможность работать с информацией на логическом уровне, а база данных брала на себя задачу физического хранения. Это привело к резкому скачку производительности;
создание специализированного языка составления нерегламентированных запросов к базе данных.
В СУБД IMS была реализована иерархическая модель данных, в которой существует один-единственный путь к каждой записи. Недостатки такой модели подтолкнули разработки в этом направлении. Появились разработки, обеспечившие возможность использования сетевой, а далее и реляционной моделей данных. Одновременно были начаты и реализованы разработки в части стандартизации по созданию языков запросов. В 1986 г. организация ANSI опубликовала официальный стандарт языка SQL.
Понятие «данные» в концепции баз данных – это набор конкретных значений, параметров, характеризующих объект, условие, ситуацию или любые другие факторы. Данные не обладают определенной структурой, данные становятся информацией тогда, когда пользователь задает им определенную структуру, т.е. осознает их смысловое содержание в соответствии с некой моделью представления. Поэтому центральным понятием в области баз данных является понятие модели.
Модель данных – это некоторая абстракция, которая, будучи приложенной к конкретным данным, позволяет пользователям и разработчикам трактовать их уже как информацию, то есть сведения, содержащие не только данные, но и взаимосвязь между ними.