Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
!!ШПОРЫ_МЕХАНИКА!!.docx
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
1.56 Mб
Скачать
  1. Подшипники скольжения. Общие сведения. Конструкции и материалы. Расчет.

Общие сведения о подшипниках скольжения. Подшипник скольжения является парой вращения. Состоит из опорного участка вала (цапфы) и собственно подшипника 2, в котором скользит цапфа. Их используют в качестве опор валов и осей в случаях, когда применение подшипников качения затруднено или невозможно по ряду причин: 1)высокие вибрационные и ударные нагрузки; 2) низкие и особо высокие частоты вращения; 3)работа в воде, агрессивных средах, 4)при отсутствии или недостаточном смазывании ; 5)необходимость выполнения диаметрального разъема; 6)отсутствие подшипников качения требуемых диаметров и др. Благодаря бесшумности , указанным выше достоинствам, а также по конструктивным и экономическим соображениям опоры скольжения находят широкое применение в паровых и газовых турбинах, двигателях внутреннего сгорания, центробежных насосах, центрифугах, металлообрабатывающих станках, прокатных станах, тяжелых редукторах и пр. По виду трения скольжения различают: 1)подшипники сухого трения — работают на твердых смазках или без смазки; 2)подшипники граничного (полужидко­стного) трения; 3)подшипники жидкостного трения; 4)подшипники с газовой смазкой. По виду воспринимаемой нагрузки подшипники подразделяют на: 1)радиальные — воспринимают радиальную нагрузку; 2)упорные — воспринимают осевые силы ; 3)радиально-упорные — воспринимают радиальные и осевые нагрузки. Обычно их функции выполняют упорные подшипники, совмещенные с радиальными. Цапфу, передающую радиальную нагрузку, называют шипом — при расположении ее в конце вала и шейкой — если она находится в середине вала. Цапфу, передающую осевую нагрузку, называют пятой, а подшипник — подпятником. Рабочая поверхность подшипников и цапф может быть цилиндрической, конической и шаровой формы . Конические и шаровые подшипники применяются редко.

. Особенности работы подшипников скольжения. Условия работы подшипников скольжения определяются основными параметрами режима работы (удельной нагрузкой р и угловой скоростью ω цапфы), наличием и типом смазочного материала, физико-механическими характеристиками контактирующих поверхностей. Для однотипных подшипников с одинаковым соотношением размеров (диаметра d и длины l цапфы) потери на трение пропорциональны коэффициенту трения f=2Tf/(Frd), где Tf - момент трения в подшипнике; Fr - радиальная сила (опорная реакция). В подшипниках сухого трения коэффициент трения обычно не слишком значительно меняется в зависимости от параметров режима работы. В подшипниках граничного трения влияние параметров режима работы весьма существенно. Коэффициент граничного трения может достигать значений 0,2...0,3. Граничное трение сопровождается износом контактирующих поверхностей. Описанные условия работы типичны для низкоскоростных подшипников с периодической или недостаточной подачей смазки и недопустимы для высокоскоростных подшипников. С увеличением ω коэффициент трения резко уменьшается в связи с переходом трения в полужидкостное и наличием одновременно граничной и жидкостной смазки .Коэффициент полужидкостного трения ниже, чем при граничном трении. Однако режим характеризуется нестабильными условиями смазывания, так как повышение температуры в зоне контакта уменьшает вязкость и вызывает разрушение граничной пленки и повышение коэффициента трения. Поэтому работа подшипника с высокой угловой скоростью в режиме полужидкостного трения также опасна. Начиная с угловой скорости ω=ωкр при которой коэффициент трения f = fmin, вал отходит от подшипника («всплывает»), смещается в направлении вращения, занимая новое положение с меньшим эксцентриситетом цапфы и подшипника. Последующее увеличение приводит к увеличению коэффициента трения в связи с увеличением толщины слоя смазки и ростом гидравлических потерь. При этом вал удерживается на «масляном клине» - осуществляется режим жидкостного трения. Так как непосредственный контакт отсутствует, то трение в подшипнике определяется законами гидродинамики. Коэффициент жидкостного трения не превышает 0,005, и износ практически отсутствует, потери на трение и тепловыделение невелики. Условия смазывания носят устойчивый характер.

. Гидростатические и гидродинамические подшипники.

Распространены два способа создания «поддерживающего» давления:

статический (гидростатический) и гидродинамический. В соответствии с этим различают гидростатический и гидродинамический подшипники жидкостного трения. В гидростатических подшипниках давление в поддерживающем слое смазочного материала создают насосом, подающим материал в зазор между цапфой и подшипником . Эти подшипники требуют для нормальной работы сложной гидросистемы. Гидродинамические подшипники получили большее распространение. В них смазочный материал следует подавать только в зону низкого давления откуда вращающейся цапфой он нагнетается вниз, образуя клиновой поддерживающий слой. Проходя через узкий участок радиального зазора, часть смазочного материала удаляется в торцовый зазор между цапфой и подшипником. Другая его часть вытекает в торцовый зазор поверх цапфы, охлаждая подшипник. Удельная нагрузка на подшипник p=Fr/(ld).

. Конструкции подшипников скольжения и материалы деталей. Подшипники скольжения состоят из двух основных частей: корпуса и подшипниковой втулки (вкладыша). Применение вкладышей позволяет изготовлять детали корпусов из дешевых материалов и облегчает ремонт. В малогабаритных и неответственных подшипниках вкладыши иногда отсутствуют, их назначение в этом случае выполняют корпуса. Наиболее распространены опоры с неподвижной осью б) и с подвижной осью в) В механизмах используют опоры на центрах и опоры на кернах г, д)Керны изготовляют в форме цилиндрических осей диаметром 0,25...2 мм, их конические концы закругляют по сферической поверхности радиусом rк = 0,01...0,2 мм. Опоры механизмов и машин условно можно подразделить на автономные и встроенные. Автономные опоры изготовляют по стандартам в разъемном и неразъемном исполнениях. Подшипники с неразъемным корпусом сравнительно просты и дешевы, но сложны при монтаже. Это ограничивает область их использования . Разъемные подшипники широко применяются в различных конструкциях. Он состоит из: корпуса 1, крышки 2, вкладыша 3, крепежных болтов с гайками 4 и масленки 5. Подшипниковые вкладыши выполняют цилиндрическими без бурта для радиальной нагрузки или с буртом для восприятия осевой и радиальной сил. Их изготовляют неразъемными и разъемными Разъем вкладыша рекомендуется выполнять в плоскости, перпендикулярной радиальной нагрузке., а разъем корпуса — ступенчатым. Уступ в ступенчатом разъеме препятствует поперечному сдвигу крышки относительно корпуса подшипника. Смазывание осуществляют различными смазочными материалами с помощью колпачковых или капельных масленок.

Расчет подшипников скольжения

Расчет подшипников скольжения производится по тем же формулам, что и расчет цапф, так как размеры вкладыша определяются размерами шипа или шейки.

Размеры вкладыша проверяются на удельное давление

p = R / ld = [p]     кг/см2

и нагрев

pv ? [pv]   кгм/сек*см2

Величины [р] и [рv] берутся по табл. 171 и 172.

Таблица 171. Средние допускаемые удельные давления [р] для цапф.

Таблица 172. Допускаемые значения условного коэффициента [рv] на нагрев.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]