
- •1.Основные положения науки о сопротивлении материалов.
- •2.Гипотезы и принципы, принимаемые при исследовании деформированного состояния упругих тел.
- •3.Внутренние усилия в нагруженной детали. Метод сечений. Напряжения. Деформации.
- •6.Испытания на растяжение-сжатие. Понятие об условной и истинной диаграмме растяжения.
- •7. Вытяжка за предел текучести, разгрузка и повторное нагружение, наклеп.
- •8.Понятие о последействии: ползучесть и релаксация.
- •9.Полная работа, затраченная на разрушение образца.
- •10.Понятие о концентрации напряжений, эффективный и теоретические коэффициенты концентрации напряжений, понятие о методах их определения.
- •11.Диаграмма растяжения и сжатия хрупких материалов (в примере чугуна).
- •12.Влияние различных факторов на механические характеристики материалов.
- •14. Сдвиг и кручение. Чистый сдвиг и его особенности.
- •17. Изгиб. Внутренние силовые факторы, возникающие в поперечных сечениях бруса при изгибе.
- •18.Напряжения в брусе при чистом изгибе. Поперечный изгиб.
- •Геометрические характеристики плоских сечений. Статические моменты инерции сечений. Моменты инерции сечений.
- •Главные моменты инерции. Главные оси инерции.
- •Теория напряженного состояния. Виды напряженного состояния.
- •Виды напряженного состояния тела.
- •Плоское напряженное состояние.
- •Главные напряжения. Главные площадки.
- •Экстремальные касательные напряжения. Понятие о пространственном напряженном состоянии.
- •Гипотезы (теории) прочности. Назначение гипотез прочности.
- •Сложное сопротивление. Основные понятия. Примеры построения эпюр внутренних усилий для стержня с ломаной осью.
- •Изгиб в двух плоскостях (косой изгиб).
- •Изгиб с растяжением (сжатием).
- •Кручение с изгибом.
- •Расчет вала на изгиб с кручением.
- •Прочность при переменных напряжениях и факторы, влияющие на их предел выносливости.
- •Влияние размеров детали
- •Влияние состояния поверхности
- •Влияние поверхностного упрочнения
- •Влияние асимметрии цикла
- •Усталость материалов. Методы определения предела выносливости. Диаграмма предельных напряжений.
- •Концентрация напряжений. Факторы, определяющие циклическую прочность.
- •Расчет на прочность при переменных напряжениях. Формула прочности.
- •37. Общие сведения о машинах и приборах.
- •38. Функциональная классификация машин
- •39. Основные понятия о механизмах.
- •40. Конструктивно-функциональная классификация механизмов.
- •41. Понятие об узлах и деталях.
- •42. Основы проектирования механизмов, стадии разработки.
- •43. Требования к деталям машин и приборов. Технологичность. Экономичность. Надежность и долговечность
- •45. Стадии разработки деталей.
- •46. Элементы сапр. Системный подход.
- •47. Общие сведения о механических передачах. Назначение передач. Классификация передач. Основные характеристики передач.
- •48. Основные типы механических передач.
- •49.Зубчатые передачи
- •50.Червячные передачи.Расчет передачи.
- •51.Планетарные передачи.Расчет передачи.
- •52. Волновые передачи. Рычажные передачи.Расчет
- •53.Фрикционные передачи. Расчет.
- •54. Ременная передача. Расчет.
- •55. Цепные передачи. Расчет.
- •Общая характеристика валов и осей.
- •58.Проектный расчет валов. Проверочный расчет валов на прочность, жесткость и колебания.
- •Подшипники (опоры валов и осей).
- •Подшипники скольжения. Общие сведения. Конструкции и материалы. Расчет.
- •61. Подшипники качения. Общие сведения. Классификация.
- •. Типы подшипников качения. Выбор и расчет.
- •I. Радиальные подшипники
- •II. Упорные подшипники
- •III.Специальные подшипники
- •Конструкции узлов. Уплотнительные устройства. Посадки подшипников на вал и в корпус. Монтаж и демонтаж подшипников. Смазка подшипников качения.
- •Муфты механических приводов. Общие сведения.
- •Сцепные управляемые и самоуправляющиеся муфты.
- •Соединения деталей. Резьбовые соединения.
- •Заклепочные соединения. Сварные соединения.
- •Паяные соединения. Клеевые соединения. Паяные соединения
- •Достоинства и недостатки паяных соединений
- •С натягом и профильные соединения. Соединение деталей c натягом.
- •Достоинства и недостатки соединений с натягом
- •Способы получения соединений с натягом
- •Профильные соединения.
- •Достоинства и недостатки профильных соединений
- •Шпоночные соединения. Зубчатые соединения.
- •136 Шпоночные соединения. Общие сведения.
- •137 Критерии работоспособности и расчет соединений.(шпонка)
- •Штифтовые и клеммовые соединения.
- •Корпусные детали механизмов. Назначение.
- •160 Конструкция и материалы.
- •Требования, предъявляемые к корпусным деталям. Классификация. Конструкции.
- •Упругие элементы. Назначение. Конструкции.
Влияние размеров детали
Экспериментально установлено, что с увеличением размеров испытуемого образца предел его выносливости понижается (масштабный эффект). Это объясняется тем, что с увеличением размеров возрастает вероятность неоднородности структуры материалов и его внутренних дефектов (раковины, газовые включения), а также тем, что при изготовлении образцов малого размера имеет место упрочнение (наклеп) поверхностного слоя на относительно большую глубину, чем у образцов больших размеров.
Влияние
размеров деталей на значение предела
выносливости учитывается коэффициентом
(масштабный
фактор),
представляющим собой отношение предела
выносливости детали заданных размеров
к пределу выносливости
лабораторного образца подобной
конфигурации, имеющего малые размеры:
.
Влияние состояния поверхности
Следы режущего инструмента, острые риски, царапины являются очагом возникновения усталостных микротрещин, что приводит к снижению предела выносливости материала.
Влияние
состояния поверхности на предел
выносливости при симметричном цикле
характеризуется
коэффициентом
качества
поверхности,
который представляет собой отношение
предела выносливости
детали с данной обработкой поверхности
к пределу выносливости
тщательно полированного образца:
.
Влияние поверхностного упрочнения
Различные
способы поверхностного упрочнения
(механическое упрочнение, химикотермическая
и термическая обработка) могут существенно
повысить значение коэффициента качества
поверхности (до 1,5 … 2,0 и более раз вместо
0,6 … 0,8 раз для деталей без упрочнения).
Это учитывается при расчетах введением
коэффициента
.
Влияние асимметрии цикла
Причиной
усталостного разрушения детали являются
длительно действующие переменные
напряжения. Но, как показали эксперименты,
с увеличением прочностных свойств
материала увеличивается их чувствительность
к асимметрии цикла, т.е. постоянная
составляющая
цикла «вносит свой вклад» в снижение
усталостной прочности. Этот фактор
учитывается коэффициентом
.
Усталость материалов. Методы определения предела выносливости. Диаграмма предельных напряжений.
В процессе эксплуатации различного рода конструкций и машин напряжения во многих их деталях многократно изменяются как по величине, так и по знаку.
Действию переменных напряжений подвержены силовой набор и обшивка крыла, оперения и фюзеляжа самолетов, лопасти винтов самолетов и вертолетов, барабаны и покрышки колес транспортных средства, вагонные оси и валки прокатных станов и многие другие детали машин.
Опыт показывает, что детали, подвергнутые воздействию переменных напряжений, разрушаются при напряжениях, значительно меньших предела прочности, а иногда и предела пропорциональности материала.
Явление прогрессивного разрушения под действием переменных напряжении носит название усталости материала.
Термин усталость не отряжает сущности явления, но он был введен еще в прошлом веке и является общепринятым.
В настоящее время в связи с увеличением скоростей движения летательных аппаратов и деталей машин и связанным с этим возрастанием частот изменения напряжений при одновременном росте их уровня (вследствие стремления уменьшить массу конструкции) именно усталость в подавляющем большинстве случаев является причиной разрушения.
Методы:
Все методы ускоренного определения предела выносливости можно разделить на 4 группы. Первая группа предполагает возможность аналитического построения кривой усталости, а, следовательно, и определения величины предела выносливости на любой базе, без проведения испытаний на усталость, путем использования уравнений, включающих в себя характеристики свойств металла, найденных по результатам статических испытаний на растяжение или каких-либо других испытаний. Вторая группа основана на использовании начального участка кривой усталости, построенного по экспериментальным данным, с последующей экстраполяцией (аналитической или графической) результатов на базы, соответствующие пределу выносливости. Третья группа предполагает возможность определения предела выносливости путем использования различных физических эффектов (нагрева образца, рассеяния энергии, неупругих циклических деформаций, магнитного и электрического сопротивления и т. п.) в области напряжений, равных пределу выносливости. Четвертая группа основана на использовании линейной и других гипотез накопления повреждения при программном нагружении образца.
Рис.1.
Реализация предельного напряжения.
Рис.2. Диаграмма усталостной прочности.