
- •Лекция № 1(2ч) Введение в промышленную экологию
- •1. Формирование техногенной среды. Ресурсный цикл (техногенный круговорот веществ).
- •2. Предмет и задачи промышленной экологии
- •3. Классификация отходов производства
- •4. Виды загрязнений и их воздействие на организм человека, а также на состояние окружающей среды
- •5. Механизмы регулирования воздействия на окружающую среду.
- •Лекция №3 (4ч). Промышленная и санитарная очистка газовоздушных выбросов
- •1. Естественный состав и основные виды техногенных загрязнений атмосферы (аэродисперсные системы, газы, пары).
- •2. Поступление загрязняющих веществ в атмосферу Мордовии
- •Основы газоочистки.
- •2. Пылеулавливающее оборудование.
- •Очистка газовоздушных выбросов.
- •Обезвреживание газовоздушных выбросов.
- •Лекция №4 (2ч). Обработка твердых отходов
- •1. Компостирование.
- •2. Твердофазная анаэробная ферментация.
- •3. Свалки и полигоны твердых бытовых отходов (тбо).
- •Лекция № 5 (2ч) Биоремедиация загрязненных почв и грунтов
- •1. Ремедиация загрязненных почв in situ.
- •2. Обработка удаленных почв и грунтов
- •2.Химический состав воды и его роль.
- •3. Основные источники загрязнения природных вод.
- •2.Показатели загрязненности сточных вод.
- •3. Основные принципы водопотребления и водоотведения предприятий
- •4. Нормирование водопотребления и водоотведения предприятий
- •4. Основные пути сокращения водопотребления и водоотведения промышленных предприятий
- •Классификация методов очистки
- •Механические (гидромеханические) методы очистки
- •1. Классификация методов очистки
- •Механическая(гидромеханическая очистка).
- •Лекция 9 (2ч). Химическая очистка сточных вод
- •2. Нейтрализация
- •Для определения высоты слоя, суточного расхода и соотношения между высотой и шириной фильтра пользуются специальными формулами.
- •2 Окисление:
- •3. Электрохимическое и радиационное окисление
- •2. Сорбция. Физико-химическая природа сорбции. Сорбенты. Устройство и принцип действия сорбентов.
- •3. Флотация. Физико-химическая природа флотации. Устройство и принцип действия флотаторов.
- •4. Экстракция. Экстрагенты. Физико-химическая природа экстракции. Технологические схемы экстракционных установок очистки стоков.
- •5.Ионообменная очистка. Ионообменники. Физико-химическая природа ионного обмена. Технологическая схема ионообменной очистки.
- •6. Очистка сточных вод методами электродиализа, эвапорации, азеотропной ректификации, термоокисления, выпаривания, кристаллизации.
- •Лекция 11 (4ч). Биологическая аэробная очистка сточных вод. «Биологическая аэробная очистка сточных вод. Основные узлы и технологическая схема». (4ч).
- •2. Механизмы биологического окисления.
- •3. Влияние различных факторов на эффективность биологической аэробной очистки.
- •4. Основные узлы сооружений аэробной биологической очистки
- •Принципиальная схем очистных сооружений
- •Лекция 12. Биологическая анаэробная очистка сточных вод (6ч).
- •Стадии метанового брожения: гидролиз, кислотогенная, ацетогенная и метаногенная.
- •2.2. Стадия гидролиза
- •2.3. Кислотогенная стадия
- •2.4. Ацетогенная стадия
- •1.5. Метаногенная стадия
- •Влияние физико-химических параметров стоков на эффективность анаэробной и биологической очистки.
- •3.1. Фазовый и химический состав загрязнений
- •3.2. Концентрация загрязнений
- •3.3. РН и буферные свойства сточных вод
- •3.4. Температурный режим
- •3.5 Биогенные элементы
- •3.6. Ингибиторы и токсичные вещества
- •3.7. Другие факторы
- •К онтактный реактор
- •4.2. Реакторы с прикрепленной биомассой
- •Лекция 13 (2ч). Методы обеззараживания и опреснения воды.
- •1.Обеззараживание воды.
- •2.Опреснение воды.
- •1.Обеззараживание воды.
- •2.Опреснение воды.
Стадии метанового брожения: гидролиз, кислотогенная, ацетогенная и метаногенная.
Остановимся более подробно на различных стадиях метанового брожения. Здесь следует заметить, что в стабильно работающих анаэробных реакторах отдельные стадии брожения в значительной степени, синхронизированы и в кинетике процесса практически не проявляются. Тем не менее, знание их закономерностей дает возможность как интенсифицировать процесс анаэробной очистки, так и предотвращать его сбои.
2.2. Стадия гидролиза
Гидролиз, входящих в ОВ стоков макромолекул (полисахаридов, белков, липидов), осуществляется экзогенными ферментами, экскретируемыми в межклеточную среду различными гидролитическими микроорганизмами. Действие этих ферментов приводит к продуцированию относительно простых продуктов, которые эффективно утилизируются самими гидролитиками и другими группами бактерий на последующих стадиях метаногенеза (см. рис. 1).
Большую роль в метаногенном сообществе играют микроорганизмы, гидролизующие полисахариды, присутствующие в стоках различных отраслей пищевой и целлюлозно-бумажной промышленности. Выделенные из анаэробных реакторов, сбраживающих стоки с взвешенными веществами, содержащими целлюлозу, штаммы целлюлолитических бактерий, как правило, являются строгими анаэробами и их концентрация при значительном содержании целлюлозных компонентов в стоке обычно составляет 105—106 клеток/мл ила, достигая 1011 кл/мл для животноводческих стоков. В настоящее время описано более 20 видов анаэробных целлюлолитических бактерий, принадлежащих к родам Clostridium, Bacteroides, Butyrivibrio, Ruminococcus, Eubacterium, Acetivibrio, Micromonospora. В анаэробных реакторах целлюлозообразующие бактерии представлены в основном клостридиальными формами. В частности, ведущей формой в термофильных условиях является Clostridium thermocellum. Выделены и описаны анаэробные гидролитические бактерии, разлагающие гемицеллюлозу, пентозаны, полисахариды клеточных стенок бактерий, крахмал, пектин. Они принадлежат к различным родам: Clostridium, Bacteroides, Lactobacillus, Bacillus и др. Численность бактерий, гидролизующих полисахариды в анаэробных реакторах, зависит от состава и концентрации сбраживаемого стока и конструкции реактора, так численность амилолитиков особенно высока на отходах крахмального производства. Биохимия брожения полисахаридов изучена достаточно хорошо на чистых культурах. Основными продуктами являются различные жирные и карбоновые кислоты, спирты, водород и углекислота. Показано, что в метаногенном сообществе метаболизм гидролитиков, в частности, целлюлозоразрушающих бактерий, подвержен регуляции со стороны метановых и гомоацетатных бактерий, потребляющих водород.
Большинство протеолитических бактерий, выделяемых из анаэробных реакторов, также являются клостридиями, способными расти за счет сбраживания пептидов и аминокислот, образующихся при гидролизе белковых соединений. В этом состоит их отличие от протеолитической микрофлоры рубца, характерной особенностью которой является потребность в углеводах и неспособность использовать аминокислоты. Протеолитической активностью обладают также обнаруживаемые в метантенках бактерии родов Peptococcus, Bifidobacterium, Staphylococcus, Eubacterium. Из реактора, сбраживающего стоки кожевенного завода, выделена неспоровая термофильная протеолитическая бактерия Thermobacteroides proteoliticus. Термофильные протеолитические бактерии, развивающиеся при температуре до 80—85°, обнаружены в термофильно сброженном навозном стоке. В осадке навозохранилища и иле гиперевтрофицированного водоема обнаружено присутствие психрофильных протеолитиков, развивающихся на белковых субстратах при температуре вплоть до 0°. У некоторых протеолитических клостриий высокая протеолитическая активность связана с вирулентностью. Большинство протеолитических бактерий способны также сбраживать углеводы, что прдтверждает высокую пластичность микроорганизмов, входящих в метановый биоценоз.
Процесс анаэробного гидролиза липидов осуществляется специальными ферментами—липазами. Большинство липаз микробиологического происхождения атакует липиды, представляющие собой глицеридные эфиры жирных кислот с длинной цепью (ЖКДЦ) по 1 и 3 позиции глицерина. .И только отдельные липазы обладают способностью осуществлять полный гидролиз липидов с образованием глицерина и ЖКДЦ. В анаэробных реакторах липолитическая микрофлора представлена клостридиями и микрококками. К гидрогенизации нерастворимых жирных кислот способны отдельные штаммы бактерий родов Ruminicoccus, Eubacterium, Butyrivibrio .
Анаэробный гидролиз лигнина практически не происходит, однако показано, что его фрагменты с молекулярным весом до 330 разлагаются в накопительных культурах с образованием СО2, СН4 и ацетата. Мономерные ароматические производные лигнина неустойчивы в анаэробных условиях и разлагаются с образованием жирных кислот. Имеются данные о биодеградации одного из мономерных компонентов лигнина — кониферилового спирта в анаэробных условиях по одному из побочных метаболических путей. Фаза гидролиза при метановом брожении тесно связана с фазой ферментации (кислотогенной), причем гидролитические бактерии осуществляют обе фазы, и их иногда объединяют с ферментативными бактериями.