
- •Утверждаю
- •Перечень вопросов для подготовки к экзамену
- •Теоретические вопросы
- •Дайте определения основных понятий теории множеств, операций над множествами.
- •Дайте определения высказывания, простого и составного высказывания, логических операций. Приведите примеры высказываний. Дайте определения логических операций с помощью таблиц истинности.
- •Дайте определение формулы логики. Сформулируйте основные равносильности логических формул. Определение логической формулы:
- •Дайте определение квантора. Сформулируйте правило построения отрицаний высказываний с кванторами.
- •Сформулируйте основную форму принципа математической индукции. Опишите метод математической индукции.
- •Опишите структуру множества действительных чисел. Дайте определение модуля действительного числа, его геометрическую интерпретацию. Дайте понятие комплексного числа.
- •Дайте описание метода построения множества комплексных чисел.
- •Действия над комплексными числами
- •Геометрическая модель
- •Модуль и аргумент
- •Сопряжённые числа
- •Представление комплексных чисел Алгебраическая форма
- •Тригонометрическая и показательная формы
- •Формула Муавра и извлечение корней из комплексных чисел
- •Дайте определение алгебраической и тригонометрической формы комплексного числа. Сформулируйте правила операций над комплексными числами в алгебраической и тригонометрической форме.
- •Дайте определение матрицы, ее видов (нулевая, единичная, квадратная, диагональная, симметрическая матрица). Приведите примеры.
- •Нулевая матрица
- •Единичная матрица
- •Диагональная матрица
- •Примеры
- •Квадратная матрица и смежные определения
- •Перечислите линейные операции над матрицами, опишите их свойства, приведите примеры.
- •Свойства линейных операций над матрицами
- •Дайте понятие определителя матрицы. Сформулируйте правила вычисления определителей второго и третьего порядка.
- •Назовите основные свойства определителей квадратных матриц. Дайте определения алгебраического дополнения и минора элемента матрицы. Опишите метод вычисления определителей порядков выше третьего.
- •Свойства обратной матрицы
- •Сформулируйте теорему Гаусса и следствия из нее. Опишите метод Гаусса решения неоднородных и однородных слау.
- •Сформулируйте теорему Крамера. Дайте описание метода Крамера для решения слау.
- •Дайте определения линейных операций над векторами, перечислите их свойства. Сформулируйте правила выполнения линейных операций над векторами в координатной форме.
- •Дайте определение скалярного произведения векторов, назовите его свойства и механический смысл. Сформулируйте правило вычисления скалярного произведение в координатной форме.
- •Дайте определения линейной комбинации векторов, линейной зависимости и линейной независимости системы векторов. Сформулируйте теоремы о линейной зависимости и линейной независимости векторов.
- •Сформулируйте определение и свойства векторного произведения векторов. Опишите вывод формулы вычисления векторного произведения векторов в координатной форме.
- •Сформулируйте определение смешанного произведение трех векторов, перечислите его свойства. Сформулируйте критерий компланарности трех векторов.
- •Дайте описание предмета и задач аналитической геометрии на плоскости. Перечислите способы задания кривой на плоскости.
- •Дайте понятие полярных координат. Установите связь между полярными и декартовыми координатами. Дайте понятие параметрического задания кривой. Приведите примеры линий, заданных параметрически.
- •Дайте описание вывода уравнений прямой на плоскости.
- •Опишите способы взаимного расположения двух прямых на плоскости. Назовите формулы для вычисления угла между прямыми.
- •Дайте определение кривых второго порядка. Дайте определение эллипса, его фокусов, эксцентриситета, директрис. Запишите уравнения эллипса, опишите его геометрические свойства.
- •Дайте определение гиперболы, ее фокусов, эксцентриситета, директрис. Запишите уравнения гиперболы, опишите ее геометрические свойства.
- •Дайте определение параболы, ее фокуса, эксцентриситета, директрисы. Запишите уравнения параболы, опишите ее геометрические свойства.
- •Дайте описание основных преобразований систем координат на плоскости (параллельный перенос координатных осей, поворот координатных осей).
- •Дайте описание метода приведения общего уравнения кривой второго порядка к каноническому виду.
- •Дайте понятие уравнений поверхности и линии в пространстве. Приведите примеры.
- •Опишите способы взаимного расположения двух плоскостей. Назовите формулы для вычисления угла между плоскостями, расстояния от точки до плоскости.
- •Дайте описание вывода уравнений прямой в пространстве (векторно-параметрическое уравнение прямой; параметрические уравнения прямой; каноническое уравнение прямой).
- •Дайте описание вывода уравнений прямой в пространстве (уравнение прямой, проходящей через две данные точки; прямая как пересечение двух плоскостей).
- •Опишите способы взаимного расположения двух прямых в пространстве. Назовите формулу для вычисления угла между прямыми в пространстве.
- •Раскройте сущность понятия предела последовательности (на примере), дайте определение предела последовательности, объясните его геометрический смысл.
- •Перечислите основные элементарные функции, изобразите их графики. Дайте определение сложной функции.
- •Дайте определение предела функции и его геометрическую интерпретацию. Приведите пример вычисления предела функции по определению.
- •Геометрическая интерпретация определения предела функции
- •Дайте определение бесконечно малой и бесконечно большой функций, перечислите их основные свойства, приведите примеры.
- •Бесконечно малая величина
- •Бесконечно большая величина
- •Свойства бесконечно малых
- •Сформулируйте и докажите критерий существования конечного предела.
- •Сформулируйте теоремы о единственности предела функции, о пределе суммы, произведения и частного двух функций, следствия из них. Приведите доказательство одной из этих теорем.
- •Назовите формулы замечательных пределов. Дайте понятие неопределенности. Приведите примеры раскрытия неопределенностей.
- •Дайте различные определения непрерывности функции в точке, перечислите основные свойства функций, непрерывных в точке.
- •Дайте определения односторонних пределов функции, точки разрыва функции, приведите классификацию точек разрыва функции.
- •Раскройте сущность понятия функции, непрерывной на интервале и на отрезке. Сформулируйте теорему Больцано-Коши, теорему Вейерштрасса. Докажите одну из этих теорем.
- •Дайте определение обратной функции. Сформулируйте теорему о непрерывности обратной функции. Приведите примеры взаимно обратных функций. Определение
- •Существование
- •Примеры
- •Свойства
- •Сформулируйте основные определения, связанные с понятием производной. Сформулируйте и докажите теорему о связи между непрерывностью и дифференцируемостью функции в точке.
- •Сформулируйте теоремы о нахождении производной суммы, произведения и частного двух функций, о производной сложной и обратной функции. Докажите одну из этих теорем.
- •Дайте определения функций, заданных параметрически и неявно, опишите метод нахождения производных таких функций.
- •Раскройте сущность понятия дифференциала, перечислите его свойства. Докажите свойство инвариантности формы дифференциала. Дайте понятие дифференциалов высших порядков.
- •Инвариантность формы дифференциала
- •Сформулируйте и докажите теоремы Лагранжа и Ролля.
- •Сформулируйте и докажите теорему Коши (дифференциального исчисления).
- •Сформулируйте и докажите правило Лопиталя и следствия из него.
Дайте описание метода построения множества комплексных чисел.
Ко́мпле́ксные[1] чи́сла (устар. Мнимые
числа[2]), —
расширение поля вещественных
чисел,
обычно обозначается
.
Любое комплексное число может быть
представлено как формальная сумма
,
где
и
—
вещественные числа,
— мнимая
единица[3].
Комплексные числа образуют алгебраически замкнутое поле — это означает, что многочлен степени с комплексными коэффициентами имеет ровно комплексных корней (основная теорема алгебры). Это одна из главных причин широкого применения комплексных чисел в математических исследованиях. Кроме того, применение комплексных чисел позволяет удобно и компактно сформулировать многие математические модели, применяемые в математической физике и в естественных науках — электротехнике, гидродинамике, картографии,квантовой механике, теории колебаний и многих других.
Поле
комплексных чисел можно понимать
как расширение
поля вещественных
чисел, в котором многочлен
имеет
корень. Следующие две
элементарные модели показывают,
что непротиворечивое построение такой
системы чисел возможно. Оба приведенных
определения приводят к изоморфным расширениям
поля вещественных чисел
,
как и любые другие конструкции поля
разложения многочлена
.
Действия над комплексными числами
Сравнение
означает,
что
и
(два
комплексных числа равны между собой
тогда и только тогда, когда равны их
действительные и мнимые части).
Сложение
Вычитание
Умножение
Деление
Геометрическая модель
Геометрическое представление комплексного числа
Рассмотрим
плоскость с прямоугольной
системой координат.
Каждому комплексному числу
сопоставим
точку плоскости с координатами
(а
также радиус-вектор,
соединяющий начало координат с этой
точкой). Такая плоскость называется комплексной.
Вещественные числа на ней занимают
горизонтальную ось, мнимая единица
изображается единицей на вертикальной
оси; по этой причине горизонтальная и
вертикальная оси называются
соответственно вещественной и мнимой осями.
Часто бывает удобно рассматривать на комплексной плоскости также полярную систему координат, в которой координатами точки являются расстояние до начала координат (модуль) и угол радиус-вектора точки (показанного синей стрелкой на рисунке) с горизонтальной осью (аргумент). Подробнее см. ниже.
В этом наглядном представлении сумма комплексных чисел соответствует векторной сумме соответствующих радиус-векторов. При перемножении комплексных чисел их модули перемножаются, а аргументы складываются. Если модуль второго сомножителя равен 1, то умножение на него геометрически означает поворот радиус-вектора первого числа на угол, равный аргументу второго числа. Этот факт объясняет широкое использование комплексного представления в теории колебаний, где вместо терминов «модуль» и «аргумент» используются термины «амплитуда» и «фаза».
Геометрическая модель комплексных чисел широко используется в планиметрии: многие планиметрические теоремы можно доказать как некоторые комплексные тождества. Часто этот метод даёт наиболее простое доказательство.