Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
вопросы к экзамену по Математике.doc
Скачиваний:
0
Добавлен:
15.12.2019
Размер:
3.01 Mб
Скачать
  1. Дайте определение формулы логики. Сформулируйте основные равносильности логических формул. Определение логической формулы:

1. Всякая логическая переменная и символы "истина" ("1") и "ложь" ("0") — формулы.  2. Если А и В — формулы, то (А &В)(А v В)   B)   В) — формулы.  3. Никаких других формул в алгебре логики нет.

Равносильные формулы - две формулы А и В принимающие одинаковые значения, при одинаковых наборах значений входящих в них переменных.

Равносильность двух формул алгебры логики обозначается символом   .

Равносильное преобразование формулы - замена формулы другой, ей равносильной.

  1. Дайте определение квантора. Сформулируйте правило построения отрицаний высказываний с кванторами.

Ква́нтор — общее название для логических операций, ограничивающих область истинности какого-либо предиката и создающих выcказывание. Чаще всего упоминают: Квантор всеобщности (обозначение: Читаеться как «Любой») и Квантор существования (обозначение: читаеться как «Существует») Правило отрицания квантеров — применяется для построения отрицаний высказываний, содержащих кванторы, и имеет вид:

ПР: Существуют студенты которые учаться на отлично-И, Любые студенты учаться на отлично-Л.

  1. Сформулируйте основную форму принципа математической индукции. Опишите метод математической индукции.

Математическая индукция — один из методов математического доказательства, используется чтобы доказать истинность некоторого утверждения для всех натуральных чисел. Для этого сначала проверяется истинность утверждения с номером 1 — база (базис) индукции, а затем доказывается, что, если верно утверждение с номером n, то верно и следующее утверждение с номером n + 1 — шаг индукции, или индукционный переход. Предположим, что требуется установить справедливость бесконечной последовательности утверждений, занумерованных натуральными числами: . Допустим, что

  1. Установлено, что верно. (Это утверждение называется базой индукции.)

  2. Для любого n доказано, что если верно , то верно . (Это утверждение называется индукционным переходом.)

Тогда все утверждения нашей последовательности верны.

  1. Опишите структуру множества действительных чисел. Дайте определение модуля действительного числа, его геометрическую интерпретацию. Дайте понятие комплексного числа.

Веще́ственное, или действи́тельное число  — математическая абстракция, возникшая из потребности измерения геометрических и физических величин окружающего мира, а также проведения таких операций как извлечение корня, вычисление логарифмов, решение алгебраических уравнений 

Числовая прямая

Если натуральные числа возникли в процессе счета, рациональные — из потребности оперировать частями целого, то вещественные числа предназначены для измерения непрерывных величин. Таким образом, расширение запаса рассматриваемых чисел привело к множеству вещественных чисел, которое помимо чисел рациональных включает также другие элементы, называемые иррациональными числами.

Наглядно понятие вещественного числа можно представить себе при помощи числовой прямой. Если на прямой выбрать направление, начальную точку и единицу длины для измерения отрезков, то каждому вещественному числу можно поставить в соответствие определённую точку на этой прямой, и обратно, каждая точка будет представлять некоторое, и притом только одно, вещественное число. Вследствие этого соответствия термин числовая прямая обычно употребляется в качестве синонима множества вещественных чисел.

Модуль действительного числа

Определение. Модулем неотрицательного действительного числа х называют само это число: | х | = х; модулем отрицательного действительного числа х называют противоположное число: I х | = - х.

Короче это записывают так:

геометрическую интерпретацию

Каждому действительному числу можно поставить в соответствие точку числовой прямой, это точка будет геометрическим изображением данного действительного числа. Каждой точке числовой прямой соответствует её расстояние от начало отсчета, или длина отрезка, начало которого в точке начала отсчета, а конец – в данной точке. Длина отрезка всегда рассматривается как величина неотрицательная. Геометрической интерпретацией действительного числа служит вектор, выходящий из начала отсчета и имеющий конец в точке, изображающей данное число. Длина этого вектора будет геометрической интерпретацией модуля данного действительного числа.

Определение. Модуль числа a или абсолютная величина числа a равна a, если a больше или равно нулю и равна -a, если a меньше нуля:

Ко́мпле́ксные чи́сла , — расширение поля вещественных чисел, обычно обозначается  . Любое комплексное число может быть представлено как формальная сумма  , где   и   — вещественные числа,   — мнимая единица[.

Комплексные числа образуют алгебраически замкнутое поле — это означает, что многочлен степени   с комплексными коэффициентами имеет ровно   комплексных корней (основная теорема алгебры). Это одна из главных причин широкого применения комплексных чисел в математических исследованиях. Кроме того, применение комплексных чисел позволяет удобно и компактно сформулировать многие математические модели, применяемые в математической физике и в естественных науках — электротехнике, гидродинамике, картографии,квантовой механике, теории колебаний и многих других.