
- •Утверждаю
- •Перечень вопросов для подготовки к экзамену
- •Теоретические вопросы
- •Дайте определения основных понятий теории множеств, операций над множествами.
- •Дайте определения высказывания, простого и составного высказывания, логических операций. Приведите примеры высказываний. Дайте определения логических операций с помощью таблиц истинности.
- •Дайте определение формулы логики. Сформулируйте основные равносильности логических формул. Определение логической формулы:
- •Дайте определение квантора. Сформулируйте правило построения отрицаний высказываний с кванторами.
- •Сформулируйте основную форму принципа математической индукции. Опишите метод математической индукции.
- •Опишите структуру множества действительных чисел. Дайте определение модуля действительного числа, его геометрическую интерпретацию. Дайте понятие комплексного числа.
- •Дайте описание метода построения множества комплексных чисел.
- •Действия над комплексными числами
- •Геометрическая модель
- •Модуль и аргумент
- •Сопряжённые числа
- •Представление комплексных чисел Алгебраическая форма
- •Тригонометрическая и показательная формы
- •Формула Муавра и извлечение корней из комплексных чисел
- •Дайте определение алгебраической и тригонометрической формы комплексного числа. Сформулируйте правила операций над комплексными числами в алгебраической и тригонометрической форме.
- •Дайте определение матрицы, ее видов (нулевая, единичная, квадратная, диагональная, симметрическая матрица). Приведите примеры.
- •Нулевая матрица
- •Единичная матрица
- •Диагональная матрица
- •Примеры
- •Квадратная матрица и смежные определения
- •Перечислите линейные операции над матрицами, опишите их свойства, приведите примеры.
- •Свойства линейных операций над матрицами
- •Дайте понятие определителя матрицы. Сформулируйте правила вычисления определителей второго и третьего порядка.
- •Назовите основные свойства определителей квадратных матриц. Дайте определения алгебраического дополнения и минора элемента матрицы. Опишите метод вычисления определителей порядков выше третьего.
- •Свойства обратной матрицы
- •Сформулируйте теорему Гаусса и следствия из нее. Опишите метод Гаусса решения неоднородных и однородных слау.
- •Сформулируйте теорему Крамера. Дайте описание метода Крамера для решения слау.
- •Дайте определения линейных операций над векторами, перечислите их свойства. Сформулируйте правила выполнения линейных операций над векторами в координатной форме.
- •Дайте определение скалярного произведения векторов, назовите его свойства и механический смысл. Сформулируйте правило вычисления скалярного произведение в координатной форме.
- •Дайте определения линейной комбинации векторов, линейной зависимости и линейной независимости системы векторов. Сформулируйте теоремы о линейной зависимости и линейной независимости векторов.
- •Сформулируйте определение и свойства векторного произведения векторов. Опишите вывод формулы вычисления векторного произведения векторов в координатной форме.
- •Сформулируйте определение смешанного произведение трех векторов, перечислите его свойства. Сформулируйте критерий компланарности трех векторов.
- •Дайте описание предмета и задач аналитической геометрии на плоскости. Перечислите способы задания кривой на плоскости.
- •Дайте понятие полярных координат. Установите связь между полярными и декартовыми координатами. Дайте понятие параметрического задания кривой. Приведите примеры линий, заданных параметрически.
- •Дайте описание вывода уравнений прямой на плоскости.
- •Опишите способы взаимного расположения двух прямых на плоскости. Назовите формулы для вычисления угла между прямыми.
- •Дайте определение кривых второго порядка. Дайте определение эллипса, его фокусов, эксцентриситета, директрис. Запишите уравнения эллипса, опишите его геометрические свойства.
- •Дайте определение гиперболы, ее фокусов, эксцентриситета, директрис. Запишите уравнения гиперболы, опишите ее геометрические свойства.
- •Дайте определение параболы, ее фокуса, эксцентриситета, директрисы. Запишите уравнения параболы, опишите ее геометрические свойства.
- •Дайте описание основных преобразований систем координат на плоскости (параллельный перенос координатных осей, поворот координатных осей).
- •Дайте описание метода приведения общего уравнения кривой второго порядка к каноническому виду.
- •Дайте понятие уравнений поверхности и линии в пространстве. Приведите примеры.
- •Опишите способы взаимного расположения двух плоскостей. Назовите формулы для вычисления угла между плоскостями, расстояния от точки до плоскости.
- •Дайте описание вывода уравнений прямой в пространстве (векторно-параметрическое уравнение прямой; параметрические уравнения прямой; каноническое уравнение прямой).
- •Дайте описание вывода уравнений прямой в пространстве (уравнение прямой, проходящей через две данные точки; прямая как пересечение двух плоскостей).
- •Опишите способы взаимного расположения двух прямых в пространстве. Назовите формулу для вычисления угла между прямыми в пространстве.
- •Раскройте сущность понятия предела последовательности (на примере), дайте определение предела последовательности, объясните его геометрический смысл.
- •Перечислите основные элементарные функции, изобразите их графики. Дайте определение сложной функции.
- •Дайте определение предела функции и его геометрическую интерпретацию. Приведите пример вычисления предела функции по определению.
- •Геометрическая интерпретация определения предела функции
- •Дайте определение бесконечно малой и бесконечно большой функций, перечислите их основные свойства, приведите примеры.
- •Бесконечно малая величина
- •Бесконечно большая величина
- •Свойства бесконечно малых
- •Сформулируйте и докажите критерий существования конечного предела.
- •Сформулируйте теоремы о единственности предела функции, о пределе суммы, произведения и частного двух функций, следствия из них. Приведите доказательство одной из этих теорем.
- •Назовите формулы замечательных пределов. Дайте понятие неопределенности. Приведите примеры раскрытия неопределенностей.
- •Дайте различные определения непрерывности функции в точке, перечислите основные свойства функций, непрерывных в точке.
- •Дайте определения односторонних пределов функции, точки разрыва функции, приведите классификацию точек разрыва функции.
- •Раскройте сущность понятия функции, непрерывной на интервале и на отрезке. Сформулируйте теорему Больцано-Коши, теорему Вейерштрасса. Докажите одну из этих теорем.
- •Дайте определение обратной функции. Сформулируйте теорему о непрерывности обратной функции. Приведите примеры взаимно обратных функций. Определение
- •Существование
- •Примеры
- •Свойства
- •Сформулируйте основные определения, связанные с понятием производной. Сформулируйте и докажите теорему о связи между непрерывностью и дифференцируемостью функции в точке.
- •Сформулируйте теоремы о нахождении производной суммы, произведения и частного двух функций, о производной сложной и обратной функции. Докажите одну из этих теорем.
- •Дайте определения функций, заданных параметрически и неявно, опишите метод нахождения производных таких функций.
- •Раскройте сущность понятия дифференциала, перечислите его свойства. Докажите свойство инвариантности формы дифференциала. Дайте понятие дифференциалов высших порядков.
- •Инвариантность формы дифференциала
- •Сформулируйте и докажите теоремы Лагранжа и Ролля.
- •Сформулируйте и докажите теорему Коши (дифференциального исчисления).
- •Сформулируйте и докажите правило Лопиталя и следствия из него.
Сформулируйте определение и свойства векторного произведения векторов. Опишите вывод формулы вычисления векторного произведения векторов в координатной форме.
Под векторным произведением двух векторов a и b понимается вектор, c=a*b для которого:
1-модуль равен площади параллелограмма,
построенного на данных векторах, т.е.
,
где
угол между векторами a и
b
2-этот вектор перпендикулярен перемножаемым
векторам, т.е
.
3-если векторы a,b,c неколлинеарны, то они образуют правую тройку векторов.
1) Модуль векторного произведения а и b равен площади паралелограма построенного на векторах имеющих общее начало.
2)
свойство
антикоммутативности.
3)
4)
-свойство ассоциативности относительно
умножения на скаляр
5)
-свойство дистрибутивности по сложению.
6) Если вектор а имеет координаты
Вывод формулы в координатной форме
Сформулируйте определение смешанного произведение трех векторов, перечислите его свойства. Сформулируйте критерий компланарности трех векторов.
Определение:
Смешанным
(векторно-скалярным) произведением
векторов a,b,c
называется число, определяемое по
формуле:
.
Свойства смешанного произведения:
1.Смешанное
произведение не меняется при циклической
перестановке его сомножителей, т.е.
2.При перестановке
двух соседних сомножителей смешанное
произведение меняет свой знак на
противоположный, т.е.
.
3.(критерий компланарности векторов)вектор а b с комплонарны тогда и только тогда когда: abc=0
4.Смешанное произведение трех векторов равно объему параллелепипеда, построенного на этих векторах, a,b,c взятому со знаком плюс, если эти векторы образуют правую тройку, и со знаком минус, если они образуют левую тройку-. [a,b]*c=+-V.
Если известны
координаты векторов ,
то смешанное произведение находится
по формуле:
Дайте описание предмета и задач аналитической геометрии на плоскости. Перечислите способы задания кривой на плоскости.
Аналитическая геометрия- это раздел математики, в котором изучается геометрические объекты с площадью алгебраичных методов.
Основным методом является метод координат, который заключается в следующем:
Путем введения координатных точек. Геометрические объекты (точки, линии, поверхности)задаются аналитически с помощью чисел, уравнений или их систем, доказательство тиарем или решение геометрических задач. Тесть работа ведется не с самими геометрическими объектами, а с ими координатами.
Способы задания кривой на плоскости.
1) Кривая на плоскости обычно задается уравнением F(x)=0 относительно.
2) Полярные координаты.
3) Уравнением с угловой коэффициент. Y=kx+b
4) Задание кривой своим общим уравнением Ax+Bx+c=0
Дайте понятие полярных координат. Установите связь между полярными и декартовыми координатами. Дайте понятие параметрического задания кривой. Приведите примеры линий, заданных параметрически.
Полярная система координат — двумерная система координат, в которой каждая точка на плоскости определяется двумя числами — полярным углом и полярным радиусом.
Связь между полярными и декартовыми координатами.
Пару
полярных координат
и
можно
перевести в Декартовы
координаты
и
путём
применения тригонометрических
функций синуса и косинуса:
в то время как две декартовы координаты и могут быть переведены в полярную координату :
(по теореме
Пифагора).
Параметрическое задание кривой
Прямую на плоскости, относительно выбранной ПДСК можно задать различными способами. Пусть заданная система координат и даны две функции от одного аргумента t.
Величины х и у при каждом значении t будем рассматривать как координаты точки М. При изменении t величины х и у, меняются. Следовательно точка М перемещается по плоскости. Равенство (1) называется параметрические уравнении точки М; а t называется переменным параметром.