Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Реферат Ячиков-Системы криптографической защиты...docx
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
45.93 Кб
Скачать

Шифр Эль Гамаля

  1. Криптографы постоянно вели поиски более эффективных систем открытого шифрования, и в 1985 году Эль Гамаль предложил следующую схему на основе возведения в степень по модулю большого простого числа. Для этого задается большое простое число Р. Сообщения представляются целыми числами S из интервала (1, Р). Оригинальный протокол передачи сообщения S выглядит в варианте Шамира, одного из авторов RSA, так: 1. Отправитель А и получатель В знают лишь Р. А генерирует случайное число Х из

  2. Интервала (1,р) и в тоже генерирует случайное число y из того же интервала.

  3. А шифрует сообщение S1=S**X MOD Р и посылает В. 3. В шифрует его своим ключом S2=S1**Y MOD Р и посылает S2 к А. 4. А "снимает" свой ключ S3=S2**(-X) MOD Р и возвращает S3 к В. 5. Получатель В расшифровывает сообщение: S=S3**(-Y) MOD Р.

Этот протокол можно применить, например, для таких неожиданных целей, как игра в очко или блэкджек по телефону. Крупье шифрует карты своим ключом и передает их игроку. Игрок выбирает наугад одну из карт, шифрует карты своим ключом и возвращает их крупье. Крупье "снимает" с выбранной карты свой ключ и отсылает ее игроку. "Сняв" с этой карты свой ключ игрок узнает ее номинал и принимает решение: спасовать, тянуть еще или раскрываться. Теперь, хотя колода находится у крупье, но он не может ее раскрыть, так как карты зашифрованы ключом игрока. Крупье выбирает свою карту аналогично игроку. (Аналогичный алгоритм для игры в карты можно реализовать и на основе шифрования заменой операцией XOR. Однако им нельзя распространять ключи из-за легкого перехвата и взлома.)

В системе Эль Гамаля большая степень защиты, чем у алгоритма RSA достигается с тем же по размеру N, что позволяет почти на порядок увеличить скорость шифрования и расшифрования. Криптостойкость системы Эль-Гамаля основана на том, что можно легко вычислить степень целого числа, то есть произвести умножение его самого на себя любое число раз так же, как и при операциях с обычными числами. Однако трудно найти показатель степени, в которую нужно возвести заданное число, чтобы получить другое, тоже заданное. В общем случае эта задача дискретного логарифмирования кажется более трудной, чем разложение больших чисел на простые сомножители, на основании чего можно предположить, что сложности вскрытия систем RSA и Эль Гамаля будут сходными. С точки зрения практической реализации, как программным, так и аппаратным способом ощутимой разницы между этими двумя стандартами нет. Однако в криптостойкости они заметно различаются. Если рассматривать задачу разложения произвольного целого числа длиной в 512 бит на простые множители и задачу логарифмирования целых чисел по 512 бит, вторая задача, по оценкам математиков, несравненно сложнее первой. Однако есть одна особенность. Если в системе, построенной с помощью алгоритма RSA, криптоаналитику удалось разложить открытый ключ N одного из абонентов на два простых числа, то возможность злоупотреблений ограничивается только этим конкретным пользователем. В случае же системы, построенной с помощью алгоритма Эль Гамаля, угрозе раскрытия подвергнутся все абоненты криптографической сети. Кроме того, упомянутые выше Ленстра и Манасси не только поколебали стойкость RSA, разложив девятое число Ферма на простые множители за неприлично короткое время, но и, как было замечено некоторыми экспертами, указали "брешь" в способе Эль Гамаля. Дело в том, что подход, применявшийся при разложении на множители девятого числа Ферма, позволяет существенно усовершенствовать методы дискретного логарифмирования для отдельных специальных простых чисел. То есть тот, кто предлагает простое Р для алгоритма Эль Гамаля, имеет возможность выбрать специальное простое, для которого задача дискретного логарифмирования будет вполне по силам обычным ЭВМ. Следует заметить, что этот недостаток алгоритма Эль Гамаля не фатален. Достаточно предусмотреть процедуру, гарантирующую случайность выбора простого Р в этой системе, и тогда только что высказанное возражение теряет силу. Стоит отметить, что чисел специального вида, ослабляющих метод Эль Гамаля, очень мало и случайным их выбором можно пренебречь.

Схема Эль Гамаля.

Пусть обоим участникам протокола известны некоторое простое число p, некоторой порождающей g группы Z*p и некоторая хэш-функция h.

Подписывающий выбирает секретный ключ x R Z*p-1 и вычисляет открытый ключ y = g-x mod p. Пространством сообщений в данной схеме является Zp-1 .

Для генерации подписи нужно сначала выбрать uR Zp-1. Если uR Z*p-1 (что проверяется эффективно), то необходимо выбрать новое u. Если же u R Z*p-1 , то искомой подписью для сообщения m является пара (r,s), где r = gu mod p и

s = u-1(h(m) +xr) mod (p-1). Параметр u должен быть секретным и может быть уничтожен после генерации подписи.

Для проверки подписи (r,s) для сообщения m необходимо сначала проверить условия r  Z*p и s  Zp-1 . Если хотя бы одно из них ложно, то подпись отвергается. В противном случае подпись принимается и только тогда, когда gh(m)  yrrs(mod p ).

Вера в стойкость схемы Эль Гамаля основана на (гипотетической) сложности задачи дискретного логарифмирования по основанию g.

За­клю­че­ние

Выбор для кон­крет­ных ИС дол­жен быть ос­но­ван на глу­бо­ком ана­ли­зе сла­бых и силь­ных сто­рон тех или иных ме­то­дов за­щи­ты. Обос­но­ван­ный вы­бор той

или иной сис­те­мы защиты, в общем-то, дол­жен опи­рать­ся на ка­кие-то кри­те­рии

эф­фек­тив­но­сти. К со­жа­ле­нию, до сих пор не раз­ра­бо­та­ны под­хо­дя­щие ме­то­ди­ки оцен­ки эф­фек­тив­но­сти крип­то­гра­фи­че­ских сис­тем.

Наи­бо­лее про­стой кри­те­рий та­кой эф­фек­тив­но­сти - ве­ро­ят­ность рас­кры­тия клю­ча или мощ­ность мно­же­ст­ва клю­чей. По сути, это то же самое, что и криптостойкость. Для ее численной оценки можно использовать также и сложность раскрытия шифра путем перебора всех ключей.

Од­на­ко этот кри­те­рий не учи­ты­ва­ет других важных требований к криптосистемам:

  1. невоз­мож­ность рас­кры­тия или ос­мыс­лен­ной мо­ди­фи­ка­ции ин­фор­ма­ции на осно­ве ана­ли­за ее струк­ту­ры,

  2. со­вер­шен­ст­во ис­поль­зуе­мых про­то­ко­лов за­щи­ты,

  3. минимальный объ­ем ис­поль­зуе­мой клю­че­вой ин­фор­ма­ции,

  4. минимальная слож­ность реа­ли­за­ции (в ко­ли­че­ст­ве ма­шин­ных опе­ра­ций), ее стои­мость,

  5. высокая опе­ра­тив­ность.

Же­ла­тель­но ко­неч­но ис­поль­зо­ва­ние не­ко­то­рых ин­те­граль­ных по­ка­за­те­лей, учиты­ваю­щих ука­зан­ные фак­то­ры.

Час­то бо­лее эф­фек­тив­ным при вы­бо­ре и оцен­ке крип­то­гра­фи­че­ской сис­те­мы яв­ля­ет­ся ис­поль­зо­ва­ние экс­перт­ных оце­нок и ими­та­ци­он­ное мо­де­ли­ро­ва­ние.

В лю­бом слу­чае вы­бран­ный ком­плекс крип­то­гра­фи­че­ских ме­то­дов дол­жен соче­тать как удоб­ст­во, гиб­кость и опе­ра­тив­ность ис­поль­зо­ва­ния, так и на­деж­ную защи­ту от зло­умыш­лен­ни­ков цир­ку­ли­рую­щей в ИС ин­фор­ма­ции.