- •Теория вероятностей и математическая статистика
- •Содержание
- •В ведение
- •1.1 Теоретические сведения к практической работе №1
- •1.2 Примеры решения задач к практической работе №1
- •1.3 Ход работы
- •1.4 Содержание отчета
- •1.5 Варианты заданий для самостоятельной работы
- •1.6 Вопросы к защите практической работы №1
- •2.1 Теоретические сведения к практической работе №2
- •2.1.1 Случайные события
- •2.1.2 Классическое определение вероятности
- •2.1.3 Относительная частота события
- •2.1.4 Статистическая и геометрическая вероятности
- •2.2 Примеры решения задач к практической работе №2
- •2.3 Ход работы
- •2.4 Содержание отчета
- •2.5 Варианты заданий для самостоятельной работы
- •2.6 Вопросы к защите практической работы №2
- •3.1 Теоретические сведения к практической работе №3
- •3.1.1 Теорема сложения вероятностей несовместных событий
- •3.1.2 Противоположные события
- •3.1.3 Теорема умножения вероятностей
- •3.1.4 Вероятность появления хотя бы одного события
- •3.1.5 Формула полной вероятности
- •3.1.6 Формулы Байеса
- •3.2 Примеры решения задач к практической работе №3
- •3.3 Ход работы
- •3.4 Содержание отчета
- •3.5 Варианты заданий для самостоятельной работы
- •3.6 Вопросы к защите практической работы №3
- •4.1 Теоретические сведения к практической работе №4
- •4.1.1 Формула Бернулли
- •4.1.2 Локальная теорема Лапласа
- •4.1.3 Интегральная теорема Лапласа
- •4.2 Примеры решения задач к практической работе №4
- •4.3 Ход работы
- •4.4 Содержание отчета
- •4.5 Варианты заданий для самостоятельной работы
- •4.6 Вопросы к защите практической работы №4
- •5.1 Теоретические сведения к практической работе №5
- •5.1.1 Случайная величина
- •5.1.2 Дискретная случайная величина (дсв)
- •5.1.3 Независимые случайные величины
- •5.1.4 Функция распределения случайной величины
- •5.2 Ход работы
- •5.3 Содержание отчета
- •5.4 Варианты заданий для самостоятельной работы
- •5.5 Вопросы к защите практической работы №5
- •6.1 Теоретические сведения к практической работе №6
- •6.1.1 Математическое ожидание дискретной случайной величины
- •6.1.2 Свойства математического ожидания
- •6.1.3 Дисперсия дискретной случайной величины
- •6.1.4 Свойства дисперсии
- •6.1.5 Среднее квадратическое отклонение дискретной случайной величины
- •6.1.6 Мода и медиана дискретной случайной величины
- •6.2 Ход работы
- •6.3 Содержание отчета
- •6.4 Варианты заданий для самостоятельной работы
- •6.5 Вопросы к защите практической работы №6
- •7.1 Теоретические сведения к практической работе №7
- •7.1.1 Биноминальное распределение вероятностей
- •7.1.2 Распределение Пуассона
- •7.1.3 Геометрическое распределение вероятностей
- •7.1.4 Непрерывная случайная величина (нсв)
- •7.1.5 Равномерно распределённая нсв
- •7.2 Ход работы
- •7.3 Содержание отчета
- •7.4 Варианты заданий для самостоятельной работы
- •7.5 Вопросы к защите практической работы №7
- •8.1 Теоретические сведения к практической работе №8
- •8.1.1 Функция плотности нсв
- •8.1.2 Свойства плотности распределения
- •8.1.3 Числовые характеристики непрерывных случайных величин
- •8.2 Ход работы
- •8.3 Содержание отчета
- •8.4 Варианты заданий для самостоятельной работы
- •8.5 Вопросы к защите практической работы №8
- •9.1 Теоретические сведения к практической работе №9
- •9.1.1 Нормальный закон распределения.
- •9.1.2 Функция Лапласа
- •9.1.3 Показательное распределение
- •9.1.4 Показательный закон надежности
- •9.2 Ход работы
- •9.3 Содержание отчета
- •9.4 Варианты заданий для самостоятельной работы
- •9.5 Вопросы к защите практической работы №9
- •10.1 Теоретические сведения к практической работе №10
- •10.1.1 Генеральная и выборочная совокупности
- •10.1.2 Повторная и бесповторная выборки.
- •10.1.3 Способы отбора
- •10.1.4 Статистическое распределение выборки
- •10.1.5 Эмпирическая функция распределения
- •10.1.6 Полигон и гистограмма
- •10.1.7 Статистические оценки параметров распределения
- •10.1.8 Несмещенные, эффективные и состоятельные оценки
- •10.1.9 Генеральная и выборочная средняя
- •10.1.10 Генеральная и выборочная дисперсия
- •10.1.11 Точность оценки, надёжность. Доверительный интервал
- •10.1.12 Доверительные интервалы для оценки математического ожидания нормального распределения
- •10.1.13 Доверительные интервалы для оценки среднего квадратического отклонения нормального распределения
- •10.1.14 Характеристики вариационного ряда
- •10.2 Ход работы
- •10.3 Содержание отчета
- •10.4 Варианты заданий для самостоятельной работы
- •10.5 Вопросы к защите практической работы №10
- •Список использованных источников
- •Приложение а (обязательное)
- •Приложение б (обязательное)
- •Приложение в (обязательное)
- •Приложение г (обязательное)
2.2 Примеры решения задач к практической работе №2
Пример 1. Человек хотел позвонить по телефону, но забыл одну цифру в номере и набрал её наудачу. Какова вероятность, что цифра набрана верно?
Решение: Т.к. в десятичной системе счисления 10 цифр (0..9), а набрана одна цифра то число благоприятных исходов равно единице, а общее число исходов равно 10. Применяя формулу (5) получаем:
.
Ответ: вероятность того, что набрана правильная цифра, равна 0,1.
Пример 2. В коробке находится 10 шаров. 3 из них красные, 2 – зеленые, остальные белые. Найти вероятность того, что вынутый наудачу шар будет красным, зеленым или белым.
Решение: Появление красного, зеленого и белого шаров составляют полную группу событий. Обозначим появление красного шара – событие А, появление зеленого – событие В, появление белого – событие С.
Тогда, в соответствии с формулой (5) получаем:
;
;
.
Ответ:
вероятности событий А, В, С соответственно
равны
,
,
.
Пример 3. В партии из 10 деталей 7 стандартных. Найти вероятность того, что среди шести взятых наудачу деталей, 4 стандартных.
Решение: Перед решением задачи составим схему условия (см. рисунок 1)
10
7 станд. 3 нест.
6
|
Рис. 1 – Графическое изображение условия задачи
Обозначим через А – событие – из шести деталей четыре стандартных.
Применяя формулу классического определения вероятности (5), получаем:
,
,
.
Ответ:
вероятность того, что среди шести взятых
наудачу деталей, четыре стандартных,
равна
.
Пример 4. На каждой из шести одинаковых карточек напечатана одна из букв: а, т, м, р, с, о. Найдите вероятность того, что на четырёх, вынутых по одной и расположенных в ряд карточках можно прочесть слово «трос».
Решение: Событие А - получение слова «трос». Применяя формулу (5) получаем:
,
,
.
Ответ:
вероятность того, что на четырёх, вынутых
по одной и расположенных в ряд карточках
можно прочесть слово «трос», равна
.
2.3 Ход работы
1) Ознакомиться с теоретической частью данной работы (лекции, учебники, данные методические указания).
2) Выполнить задание по своему варианту.
3) Составить отчет по проделанной работе.
4) Ответить на контрольные вопросы к данной работе.
5) Защитить выполненную работу.
2.4 Содержание отчета
1) Тема.
2) Цель работы.
3) Ход работы.
4) Решение своего варианта.
2.5 Варианты заданий для самостоятельной работы
Вариант 1
1. Для новогодней лотереи отпечатали 1500 билетов, из которых 120 выигрышных. Какова вероятность того, что купленный билет окажется выигрышным?
2. В ящике 10 белых и 5 черных шаров. Из ящика вынимаются наугад 3 шара. Определить вероятность, что два шара белых, один черный.
3. В группе шесть мужчин и четыре женщины. Для участия в испытаниях отобраны семь человек. Какова вероятность того, что среди них есть три женщины?
4. На полке 12 книг, из которых 4 – это учебники. С полки наугад снимают 6 книг. Какова вероятность того, что 3 из них окажутся учебниками?
5. На каждой из семи одинаковых карточек напечатана одна из букв: А, Н, О, П, С, Т, Я. Найти вероятность того, что из пяти взятых наугад и расположенных вряд карточек можно будет прочесть слово «НАСТЯ».
6. При испытании партии приборов относительная частота годных приборов оказалась равной 0,9. Найти число годных приборов, если всего было проверено 200 приборов.
Вариант 2
1. Для экзамена подготовили билеты с номерами от 1 до 25. какова вероятность того, что взятый наугад учеником билет имеет однозначный номер.
2. В ящике 10 белых и 5 черных шаров. Из ящика вынимаются наугад 3 шара. Определить вероятность, что два шара черных, один белый.
3. Имеется партия, состоящая из 15 деталей, среди которых четыре бракованные. Какова вероятность, что из пяти наудачу выбранных деталей две бракованных?
4. На подносе 5 пирожков с картошкой и 4 с капустой. Наудачу взяли 3 пирожка. Какова вероятность того, что среди них хотя бы 2 с капустой?
5. На каждой из шести одинаковых карточек напечатана одна из букв: А, О, П, К, Т, Я. Найти вероятность того, что из пяти взятых наугад и расположенных вряд карточек можно будет прочесть слово «ПЯТАК».
6. При стрельбе из винтовки относительная частота попадания в цель оказалась равной 0,85. Найти число попаданий, если всего было произведено 120 выстрелов.
Вариант 3
1. Ученик при подготовке к экзамену не успел выучить один из тех 25 билетов, которые будут предложены на экзамене. Какова вероятность того, что ученику достанется на экзамене выученный билет?
2. В ящике 8 белых и 3 черных шаров. Из ящика вынимаются наугад 4 шара. Определить вероятность, что три шара белых, один чёрных.
3. В группе 15 студентов, среди которых 6 отличников. По списку наудачу отобраны десять студентов. Найти вероятность того, что среди отобранных студентов четыре отличника.
4. В пачке находятся одинаковые по размеру 7 тетрадей в линейку и 5 в клетку. Из пачки наугад берут 3 тетради. Какова вероятность того, что все 3 тетради окажутся в клетку?
5. На каждой из восьми одинаковых карточек напечатана одна из букв: Е, К, Л, М, Н, О, П, Р. Найти вероятность того, что из пяти взятых наугад и расположенных вряд карточек можно будет прочесть слово «ПОКЕР».
6. По цели произведено 30 выстрелов, причём относительная частота попадания в цель оказалось равная 0,55. Сколько выстрелов попало в цель?
Вариант 4
1. Брошена стандартная игральная кость. Какова вероятность того, что выпадет два.
2. В ящике 7 белых и 8 черных шаров. Из ящика вынимаются наугад 5 шаров. Определить вероятность, что два шара черных, три белых.
3. В ящике имеется 14 деталей, среди которых 8 окрашенных. Сборщик наудачу извлекает четыре детали. Найти вероятность того, что извлечённые детали окажутся окрашенными.
4. Четыре билета на ёлку распределили по жребию между 15 мальчиками и 12 девочками. Какова вероятность того, что билеты достанутся 2 мальчикам и 2 девочкам?
5. На каждой из девяти одинаковых карточек напечатана одна из букв: И, К, У, М, Н, Т, П, Р, А. Найти вероятность того, что из шести взятых наугад и расположенных вряд карточек можно будет прочесть слово «МИНУТА».
6. При испытании партии приборов относительная частота годных приборов оказалась равной 0,7. Найти число годных приборов, если всего было проверено 150 приборов.

4
станд. и 2 нест.