- •Теория вероятностей и математическая статистика
- •Содержание
- •В ведение
- •1.1 Теоретические сведения к практической работе №1
- •1.2 Примеры решения задач к практической работе №1
- •1.3 Ход работы
- •1.4 Содержание отчета
- •1.5 Варианты заданий для самостоятельной работы
- •1.6 Вопросы к защите практической работы №1
- •2.1 Теоретические сведения к практической работе №2
- •2.1.1 Случайные события
- •2.1.2 Классическое определение вероятности
- •2.1.3 Относительная частота события
- •2.1.4 Статистическая и геометрическая вероятности
- •2.2 Примеры решения задач к практической работе №2
- •2.3 Ход работы
- •2.4 Содержание отчета
- •2.5 Варианты заданий для самостоятельной работы
- •2.6 Вопросы к защите практической работы №2
- •3.1 Теоретические сведения к практической работе №3
- •3.1.1 Теорема сложения вероятностей несовместных событий
- •3.1.2 Противоположные события
- •3.1.3 Теорема умножения вероятностей
- •3.1.4 Вероятность появления хотя бы одного события
- •3.1.5 Формула полной вероятности
- •3.1.6 Формулы Байеса
- •3.2 Примеры решения задач к практической работе №3
- •3.3 Ход работы
- •3.4 Содержание отчета
- •3.5 Варианты заданий для самостоятельной работы
- •3.6 Вопросы к защите практической работы №3
- •4.1 Теоретические сведения к практической работе №4
- •4.1.1 Формула Бернулли
- •4.1.2 Локальная теорема Лапласа
- •4.1.3 Интегральная теорема Лапласа
- •4.2 Примеры решения задач к практической работе №4
- •4.3 Ход работы
- •4.4 Содержание отчета
- •4.5 Варианты заданий для самостоятельной работы
- •4.6 Вопросы к защите практической работы №4
- •5.1 Теоретические сведения к практической работе №5
- •5.1.1 Случайная величина
- •5.1.2 Дискретная случайная величина (дсв)
- •5.1.3 Независимые случайные величины
- •5.1.4 Функция распределения случайной величины
- •5.2 Ход работы
- •5.3 Содержание отчета
- •5.4 Варианты заданий для самостоятельной работы
- •5.5 Вопросы к защите практической работы №5
- •6.1 Теоретические сведения к практической работе №6
- •6.1.1 Математическое ожидание дискретной случайной величины
- •6.1.2 Свойства математического ожидания
- •6.1.3 Дисперсия дискретной случайной величины
- •6.1.4 Свойства дисперсии
- •6.1.5 Среднее квадратическое отклонение дискретной случайной величины
- •6.1.6 Мода и медиана дискретной случайной величины
- •6.2 Ход работы
- •6.3 Содержание отчета
- •6.4 Варианты заданий для самостоятельной работы
- •6.5 Вопросы к защите практической работы №6
- •7.1 Теоретические сведения к практической работе №7
- •7.1.1 Биноминальное распределение вероятностей
- •7.1.2 Распределение Пуассона
- •7.1.3 Геометрическое распределение вероятностей
- •7.1.4 Непрерывная случайная величина (нсв)
- •7.1.5 Равномерно распределённая нсв
- •7.2 Ход работы
- •7.3 Содержание отчета
- •7.4 Варианты заданий для самостоятельной работы
- •7.5 Вопросы к защите практической работы №7
- •8.1 Теоретические сведения к практической работе №8
- •8.1.1 Функция плотности нсв
- •8.1.2 Свойства плотности распределения
- •8.1.3 Числовые характеристики непрерывных случайных величин
- •8.2 Ход работы
- •8.3 Содержание отчета
- •8.4 Варианты заданий для самостоятельной работы
- •8.5 Вопросы к защите практической работы №8
- •9.1 Теоретические сведения к практической работе №9
- •9.1.1 Нормальный закон распределения.
- •9.1.2 Функция Лапласа
- •9.1.3 Показательное распределение
- •9.1.4 Показательный закон надежности
- •9.2 Ход работы
- •9.3 Содержание отчета
- •9.4 Варианты заданий для самостоятельной работы
- •9.5 Вопросы к защите практической работы №9
- •10.1 Теоретические сведения к практической работе №10
- •10.1.1 Генеральная и выборочная совокупности
- •10.1.2 Повторная и бесповторная выборки.
- •10.1.3 Способы отбора
- •10.1.4 Статистическое распределение выборки
- •10.1.5 Эмпирическая функция распределения
- •10.1.6 Полигон и гистограмма
- •10.1.7 Статистические оценки параметров распределения
- •10.1.8 Несмещенные, эффективные и состоятельные оценки
- •10.1.9 Генеральная и выборочная средняя
- •10.1.10 Генеральная и выборочная дисперсия
- •10.1.11 Точность оценки, надёжность. Доверительный интервал
- •10.1.12 Доверительные интервалы для оценки математического ожидания нормального распределения
- •10.1.13 Доверительные интервалы для оценки среднего квадратического отклонения нормального распределения
- •10.1.14 Характеристики вариационного ряда
- •10.2 Ход работы
- •10.3 Содержание отчета
- •10.4 Варианты заданий для самостоятельной работы
- •10.5 Вопросы к защите практической работы №10
- •Список использованных источников
- •Приложение а (обязательное)
- •Приложение б (обязательное)
- •Приложение в (обязательное)
- •Приложение г (обязательное)
7.5 Вопросы к защите практической работы №7
1. Дать определение НСВ. Пример.
2. Какое распределение называется равномерным?
3. Формула равномерного распределения. График.
4. Как определить математическое ожидание и дисперсию случайной величины, подчиненной равномерному закону распределения?
5. Дать понятие геометрического распределения. Формула.
6. Какое распределение называется биноминальным?
7. Какое распределение называется распределением Пуассона?
Практическая работа №8
Тема: Вычисление вероятностей и нахождение характеристик для НСВ с помощью функции плотности и интегральной функции распределения.
Цель работы: Изучить методику вычисления вероятностей, характеристик НСВ с помощью функции плотности и интегральной функции распределения. Научиться вычислять математическое ожидание, дисперсию и среднее квадратическое отклонение НСВ по её функции плотности, находить медиану и моду.
8.1 Теоретические сведения к практической работе №8
8.1.1 Функция плотности нсв
Функция распределения полностью характеризует случайную величину, однако, имеет один недостаток. По функции распределения трудно судить о характере распределения случайной величины в небольшой окрестности той или иной точки числовой оси.
Плотностью распределения вероятностей непрерывной случайной величины Х называется функция f(x) – первая производная от функции распределения F(x).
(36)
Плотность распределения также называют дифференциальной функцией. Для описания дискретной случайной величины плотность распределения неприемлема.
Смысл плотности распределения состоит в том, что она показывает, как часто появляется случайная величина Х в некоторой окрестности точки х при повторении опытов.
После введения функций распределения и плотности распределения можно дать следующее определение непрерывной случайной величины.
Случайная величина Х называется непрерывной, если ее функция распределения F(x) непрерывна на всей оси ОХ, а плотность распределения f(x) существует везде, за исключением (может быть, конечного числа точек).
Зная плотность распределения, можно вычислить вероятность того, что некоторая случайная величина Х примет значение, принадлежащее заданному интервалу.
Теорема. Вероятность того, что непрерывная случайная величина Х примет значение, принадлежащее интервалу (a, b), равна определенному интегралу от плотности распределения, взятому в пределах от a до b.
(37)
Доказательство этой теоремы основано на определении плотности распределения и третьем свойстве функции распределения, записанном выше.
Геометрически это означает, что вероятность того, что непрерывная случайная величина примет значение, принадлежащее интервалу (a, b), равна площади криволинейной трапеции, ограниченной осью ОХ, кривой распределения f(x) и прямыми x=a и x=b.
Функция распределения может быть легко найдена, если известна плотность распределения, по формуле:
(38)
